11 research outputs found

    High levels of chromosomal differentiation in Euchroma gigantea L. 1735 (Coleoptera, Buprestidae)

    No full text
    Euchroma gigantea was karyotypically studied using conventional staining, C-banding, silver nitrate staining and ribosomal fluorescent in situ hybridization (rDNA FISH). Broad wide autosomal polymorphism and a complex sex determination system were found in this beetle. Karyotype complements ranging from 2n = 32, X1X2X3Y1Y2Y3 to 2n = 36,X1X2X3Y1Y2Y3 were detected in the sample analyzed. Punctiform supernumerary chromosomes were present in the different karyotypes. The karyotypic evolution of Brazilian E. gigantea may have taken two directions, reduction in the diploid number of 2n = 36 to 24 through centric fusions or 2n = 24 to 36 due to chromosomal fissions. In addition, pericentric inversions were also involved. The complex multiple sex mechanism of this species seems to be old and well established since it is found in specimens from different populations. Small pericentromeric blocks of constitutive heterochromatin were located on the autosomes and terminal blocks were also found on some small pairs. The sex chromosomes showed larger constitutive heterochromatin blocks. Silver nitrate staining during prophase I of meiosis showed labeling of the sex chromosome chain. However, the rDNA sites could only be precisely determined by FISH, which permitted the identification of these ribosomal sites on chromosomes X1 and X2 of this species

    Different compositions of pharmaceuticals in Dutch and Belgian rivers explained by consumption patterns and treatment efficiency

    Get PDF
    In the current study, 43 pharmaceuticals and 18 transformation products were studied in the river Meuse at the Belgian-Dutch border and four tributaries of the river Meuse in the southern part of the Netherlands. The tributaries originate from Belgian, Dutch and mixed Dutch and Belgian catchments. In total, 23 pharmaceuticals and 13 transformation products were observed in samples of river water collected from these rivers. Observed summed concentrations of pharmaceuticals and transformation products in river water ranged from 3.5 to 37.8 ”g/L. Metformin and its transformation product guanylurea contributed with 53 to 80 % to this concentration, illustrating its importance on a mass basis. Data on the flow rate of different rivers and demographics of the catchments enabled us to calculate daily per capita loads of pharmaceuticals and transformation products. These loads were linked to sales data of pharmaceuticals in the catchment. Simple mass balance modelling accounting for human excretion and removal by sewage treatment plants revealed that sales could predict actual loads within a factor of 3 for most pharmaceuticals. Rivers that originated from Belgian and mixed Dutch and Belgian catchments revealed significantly higher per capita loads of pharmaceuticals (16.0¿±¿2.3 and 15.7¿±¿2.1 mg/inhabitant/day, respectively) than the Dutch catchment (8.7¿±¿1.8 mg/inhabitant/day). Furthermore, the guanylurea/metformin ratio was significantly lower in waters originating from Belgium (and France) than in those from the Netherlands, illustrating that sewage treatment in the Belgian catchment is less efficient in transforming metformin into guanylurea. In summary, the current study shows that consumption-based modelling is suitable to predict environmental loads and concentrations. Furthermore, different consumption patterns and wastewater treatment efficiency are clearly reflected in the occurrence and loads of pharmaceuticals in regional rivers
    corecore