3 research outputs found
In Vitro Analysis of Integrated Global High-Resolution DNA Methylation Profiling with Genomic Imbalance and Gene Expression in Osteosarcoma
Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks
MYC Deregulation in Gastric Cancer and Its Clinicopathological Implications
Our study investigated the relationship between MYC alterations and clinicopathological features in gastric cancers. We evaluated the effect of MYC mRNA expression and its protein immunoreactivity, as well as copy number variation, promoter DNA methylation, and point mutations, in 125 gastric adenocarcinoma and 67 paried non-neoplastic tissues. We observed that 77% of the tumors presented MYC immunoreactivity which was significantly associated with increased mRNA expression (p<0.05). These observations were associated with deeper tumor extension and the presence of metastasis (p<0.05). MYC protein expression was also more frequently observed in intestinal-type than in diffuse-type tumors (p<0.001). Additionally, MYC mRNA and protein expression were significantly associated with its copy number (p<0.05). The gain of MYC copies was associated with late-onset, intestinal-type, advanced tumor stage, and the presence of distant metastasis (p<0.05). A hypomethylated MYC promoter was detected in 86.4% of tumor samples. MYC hypomethylation was associated with diffuse-type, advanced tumor stage, deeper tumor extension, and the presence of lymph node metastasis (p<0.05). Moreover, eighteen tumor samples presented at least one known mutation. The presence of MYC mutations was associated with diffuse-type tumor (p<0.001). Our results showed that MYC deregulation was mainly associated with poor prognostic features and also reinforced the presence of different pathways involved in intestinal-type and diffuse-type gastric carcinogenesis. Thus, our findings suggest that MYC may be a useful marker for clinical stratification and prognosis
