27 research outputs found

    Lung Volume, Breathing Pattern and Ventilation Inhomogeneity in Preterm and Term Infants

    Get PDF
    BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process

    Respiratory muscle activity related to flow and lung volume in preterm infants compared with term infants

    No full text
    Infants with chronic lung disease (CLD) have a capacity to maintain functional lung volume despite alterations to their lung mechanics. We hypothesize that they achieve this by altering breathing patterns and dynamic elevation of lung volume, leading to differences in the relationship between respiratory muscle activity, flow and lung volume. Lung function and transcutaneous electromyography of the respiratory muscles (rEMG) were measured in 20 infants with CLD and in 39 healthy age-matched controls during quiet sleep. We compared coefficient of variations (CVs) of rEMG and the temporal relationship of rEMG variables, to flow and lung volume [functional residual capacity (FRC)] between these groups. The time between the start of inspiratory muscle activity and the resulting flow (tria)--in relation to respiratory cycle time--was significantly longer in infants with CLD. Although FRC had similar associations with tria and postinspiratory activity (corrected for respiratory cycle time), the CV of the diaphragmatic rEMG was lower in CLD infants (22.6 versus 31.0%, p = 0.030). The temporal relationship of rEMG to flow and FRC and the loss of adaptive variability provide additional information on coping mechanisms in infants with CLD. This technique could be used for noninvasive bedside monitoring of CLD

    Patient-ventilator interaction during neurally adjusted ventilatory assist in low birth weight infants.

    No full text
    Neurally Adjusted Ventilatory Assist (NAVA), a mode of mechanical ventilation controlled by diaphragmatic electrical activity (EAdi), may improve patient-ventilator interaction. We examined patient-ventilator interaction by comparing EAdi to ventilator pressure during conventional ventilation and NAVA delivered invasively and non-invasively. Seven intubated infants (birth weight 936g (range 676–1266g); gestational age 26 weeks (range 25–29)) were studied before and after extubation, initially during CV, and then NAVA. NAVA-intubated and NAVA-extubated demonstrated similar delays between onset of EAdi and onset of ventilator pressure of 74± 17 and 72±23 ms (p=0.698), respectively. During CV, the mean trigger delays were not different from NAVA, however 13±8.5% of ventilator breaths were triggered on average 59±27 ms prior to onset of EAdi. There was no difference in off-cycling delays between NAVA-intubated and extubated (32±34 vs. 28±11 ms). CV cycled-off prior to NAVA (120±66 ms prior, p<0.001). During NAVA, EAdi and ventilator pressure were correlated (mean determination coefficient (NAVA-intubated 0.8±0.06 and NAVA-extubated 0.73±0.22)). Pressure delivery during conventional ventilation was not correlated to EAdi. Neural expiratory time was longer (p=0.044), and respiratory rate was lower (p=0.004) during NAVA. We conclude that in low birth weight infants, NAVA can improve patient-ventilator interaction, even in the presence of large leaks
    corecore