218 research outputs found

    Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates

    Full text link
    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.Comment: 15 pages, 6 figures, accepted for publication in Origins of Life and Evolution of Biosphere

    Cetuximab Augments Cytotoxicity with Poly (ADP-Ribose) Polymerase Inhibition in Head and Neck Cancer

    Get PDF
    Overexpression of the epidermal growth factor receptor (EGFR) is a hallmark of head and neck cancers and confers increased resistance and inferior survival rates. Despite targeted agents against EGFR, such as cetuximab (C225), almost half of treated patients fail this therapy, necessitating novel therapeutic strategies. Poly (ADP-Ribose) polymerase (PARP) inhibitors (PARPi) have gained recent attention due to their unique selectivity in killing tumors with defective DNA repair. In this study, we demonstrate that C225 enhances cytotoxicity with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu head and neck cancer cells. The mechanism of increased susceptibility to C225 and PARPi involves C225-mediated reduction of non-homologous end-joining (NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) repair, the subsequent persistence of DNA damage, and activation of the intrinsic apoptotic pathway. By generating a DSB repair deficiency, C225 can render head and neck tumor cells susceptible to PARP inhibition. The combination of C225 and the PARPi ABT-888 can thus be an innovative treatment strategy to potentially improve outcomes in head and neck cancer patients. Furthermore, this strategy may also be feasible for other EGFR overexpressing tumors, including lung and brain cancers

    Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis

    Get PDF
    BACKGROUND: Exposure to vanadium pentoxide (V(2)O(5)) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V(2)O(5 )in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V(2)O(5)-induced bronchitis. METHODS: Normal human lung fibroblasts were exposed to V(2)O(5 )in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR. RESULTS: V(2)O(5 )altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO catogories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1). CONCLUSION: Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V(2)O(5)-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V(2)O(5)

    Radiosensitisation of U87MG brain tumours by anti-epidermal growth factor receptor monoclonal antibodies

    Get PDF
    As epidermal growth factor receptor (EGFR) has been reported to be a radiation response modulator, HER inhibitors are regarded to act as potential radiosensitisers. Our study examined the role of nimotuzumab and cetuximab both, the two monoclonal antibodies (mAbs) to EGFR, as radiosensitisers in a murine glioma model in vivo. Co-administration of both the antibodies with radiation increased the radiosensitivity of U87MG, resulting in a significant delay of subcutaneous (s.c.) tumour growth. Furthermore, the addition of antibodies to the radiation decreased brain tumour sizes and is inhibited by 40–80% the increased tumour cell invasion provoked by radiotherapy, although promoted tumour cell apoptosis. Whereas nimotuzumab led to a reduction in the size of tumour blood vessels and proliferating cells in s.c. tumours, cetuximab had no significant antiangiogenic nor antiproliferative activity. In contrast, cetuximab induced a more marked inhibition of EGFR downstream signalling compared with nimotuzumab. Moreover, both antibodies reduced the total number of radioresistant CD133+ cancer stem cells (CSCs). These results were encouraging, and showed the superiority of combined treatment of mAbs to EGFR and radiation over each single therapy against glioblastoma multiforme (GBM), confirming the role of these drugs as radiosensitisers in human GBM. In addition, we first showed the ability of mAb specifics against EGFR to target radioresistant glioma CSC, supporting the potential use in patients

    Induction cisplatin–irinotecan followed by concurrent cisplatin–irinotecan and radiotherapy without surgery in oesophageal cancer: multicenter phase II FFCD trial

    Get PDF
    A recent phase I study showed that weekly cisplatin, irinotecan and concurrent radiotherapy can be administered with moderate toxicity in patients with oesophageal cancer. Patients with no prior treatment and oesophageal cancer stage I to III, performance status <3, caloric intake >1500 kcal day−1 were included. Chemotherapy, with cisplatin 30 mg m−2 and irinotecan 60 mg m−2, was administered at days 1, 8, 22, 29, and concurrently with radiotherapy at days 43, 50, 64 and 71. Radiotherapy was delivered with 50 or 50.4 Gy in 25 fractions/5 weeks. Forty-three patients were included, 10 stage I, 19 stage II and 14 stage III. Mean age was 59.2 years (range 44–79). A total of 30 out of 43 (69.8%) patients underwent all planned treatment. During induction chemotherapy, 14 severe toxicities of grade 3 or 4 in 10 patients (23.3%) were reported with 57.1% due to haematoxicity. During chemoradiotherapy, 31 severe toxicities of grade 3 or 4 with 64.5% due to haematotoxicity were reported in 18 patients. One toxic death occurred (diarrhoea grade 4). The complete clinical response rate was 58.1% (95% CI: 43.4–72.8%). Overall survival rate at 1 and 2 years was 62.8%, (95% CI, 58.3–77.3%) and 27.9% (95% CI, 13.4–41.3%), respectively. In conclusion, cisplatin–irinotecan–radiotherapy is an active and well-tolerated regimen feasible in out-patients

    Loss of Sugar Detection by GLUT2 Affects Glucose Homeostasis in Mice

    Get PDF
    International audienceBACKGROUND: Mammals must sense the amount of sugar available to them and respond appropriately. For many years attention has focused on intracellular glucose sensing derived from glucose metabolism. Here, we studied the detection of extracellular glucose concentrations in vivo by invalidating the transduction pathway downstream from the transporter-detector GLUT2 and measured the physiological impact of this pathway. METHODOLOGY/PRINCIPAL FINDINGS: We produced mice that ubiquitously express the largest cytoplasmic loop of GLUT2, blocking glucose-mediated gene expression in vitro without affecting glucose metabolism. Impairment of GLUT2-mediated sugar detection transiently protected transgenic mice against starvation and streptozotocin-induced diabetes, suggesting that both low- and high-glucose concentrations were not detected. Transgenic mice favored lipid oxidation, and oral glucose was slowly cleared from blood due to low insulin production, despite massive urinary glucose excretion. Kidney adaptation was characterized by a lower rate of glucose reabsorption, whereas pancreatic adaptation was associated with a larger number of small islets. CONCLUSIONS/SIGNIFICANCE: Molecular invalidation of sugar sensing in GLUT2-loop transgenic mice changed multiple aspects of glucose homeostasis, highlighting by a top-down approach, the role of membrane glucose receptors as potential therapeutic targets

    New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda)

    Get PDF
    Allosauroidea has a contentious taxonomic and systematic history. Within this group of theropod dinosaurs, considerable debate has surrounded the phylogenetic position of the large-bodied allosauroid Acrocanthosaurus atokensis from the Lower Cretaceous Antlers Formation of North America. Several prior analyses recover Acrocanthosaurus atokensis as sister taxon to the smaller-bodied Allosaurus fragilis known from North America and Europe, and others nest Acrocanthosaurus atokensis within Carcharodontosauridae, a large-bodied group of allosauroids that attained a cosmopolitan distribution during the Early Cretaceous.Re-evaluation of a well-preserved skull of Acrocanthosaurus atokensis (NCSM 14345) provides new information regarding the palatal complex and inner surfaces of the skull and mandible. Previously inaccessible internal views and articular surfaces of nearly every element of the skull are described. Twenty-four new morphological characters are identified as variable in Allosauroidea, combined with 153 previously published characters, and evaluated for eighteen terminal taxa. Systematic analysis of this dataset recovers a single most parsimonious topology placing Acrocanthosaurus atokensis as a member of Allosauroidea, in agreement with several recent analyses that nest the taxon well within Carcharodontosauridae.A revised diagnosis of Acrocanthosaurus atokensis finds that the species is distinguished by four primary characters, including: presence of a knob on the lateral surangular shelf; enlarged posterior surangular foramen; supraoccipital protruding as a double-boss posterior to the nuchal crest; and pneumatic recess within the medial surface of the quadrate. Furthermore, the recovered phylogeny more closely agrees with the stratigraphic record than hypotheses that place Acrocanthosaurus atokensis as more closely related to Allosaurus fragilis. Fitch optimization of body size is also more consistent with the placement of Acrocanthosaurus atokensis within a clade of larger carcharodontosaurid taxa than with smaller-bodied taxa near the base of Allosauroidea. This placement of Acrocanthosaurus atokensis supports previous hypotheses of a global carcharodontosaurid radiation during the Early Cretaceous

    Nanotechnology in Head and Neck Cancer: The Race Is On

    Get PDF
    Rapid advances in the ability to produce nanoparticles of uniform size, shape, and composition have started a revolution in the sciences. Nano-sized structures herald innovative technology with a wide range of potential therapeutic and diagnostic applications. More than 1000 nanostructures have been reported, many with potential medical applications, such as metallic-, dielectric-, magnetic-, liposomal-, and carbon-based structures. Of these, noble metallic nanoparticles are generating significant interest because of their multifunctional capacity for novel methods of laboratory-based diagnostics, in vivo clinical diagnostic imaging, and therapeutic treatments. This review focuses on recent advances in the applications of nanotechnology in head and neck cancer, with special emphasis on the particularly promising plasmonic gold nanotechnology

    Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria

    Get PDF
    Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across 325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might allow a greater evolutionary flexibility
    corecore