271 research outputs found

    The frequency-dependent directivity of a planar Fabry-Perot polymer film ultrasound sensor

    Get PDF
    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9d, and that an illumination spot radius of less than d/4 is required to achieve it

    High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics

    Get PDF
    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs' = 1mm(-1)) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI

    Effect of wavelength selection on the accuracy of blood oxygen saturation estimates obtained from photoacoustic images

    Get PDF
    In photoacoustic tomography (PAT) the image contrast is due to optical absorption, and because of this PAT images are sensitive to changes in blood oxygen saturation (sO2). However, this is not a linear relationship due to the presence of a non-uniform light fluence distribution. In this paper we systematically evaluate the conditions in which an approximate linear inversion scheme–which assumes the internal fluence distribution is unchanged when the absorption coefficient changes–can give accurate estimates of sO2. A numerical phantom of highly vascularised tissue is used to test this assumption. It is shown that using multiple wavelengths over a broad range of the near-infrared spectrum yields inaccurate estimates of oxygenation, while a careful selection of wavelengths in the 620-920nm range is likely to yield more accurate oxygenation values. We demonstrate that a 1D fluence correction obtained by fitting a linear function to the average decay rate in the image can further improve the estimates. However, opting to use these longer wavelengths involves sacrificing signal-to-noise ratio in the image, as the absorption of blood is low in this range. This results in an inherent trade-off between error in the sO2 estimates due to fluence variation and error due to noise. This study shows that the depth to which sO2 can be estimated accurately using a linear approximation is limited in vivo, even with idealised measurements, to at most 3mm. In practice, there will be even greater uncertainties affecting the estimates, e.g., due to bandlimited or partial-view acoustic detection

    All-optical endoscopic probe for high resolution 3D photoacoustic tomography

    Get PDF
    A novel all-optical forward-viewing photoacoustic probe using a flexible coherent fibre-optic bundle and a Fabry- Perot (FP) ultrasound sensor has been developed. The fibre bundle, along with the FP sensor at its distal end, synthesizes a high density 2D array of wideband ultrasound detectors. Photoacoustic waves arriving at the sensor are spatially mapped by optically scanning the proximal end face of the bundle in 2D with a CW wavelength-tunable interrogation laser. 3D images are formed from the detected signals using a time-reversal image reconstruction algorithm. The system has been characterized in terms of its PSF, noise-equivalent pressure and field of view. Finally, the high resolution 3D imaging capability has been demonstrated using arbitrary shaped phantoms and duck embryo

    Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging

    Get PDF
    Quantitative photoacoustic imaging (qPAI) has the potential to provide high- resolution in vivo images of chromophore concentration, which may be indicative of tissue function and pathology. Many strategies have been proposed recently for extracting quantitative information, but many have not been experimentally verified. Experimental phantom-based validation studies can be used to test the robustness and accuracy of such algorithms in order to ensure reliable in vivo application is possible. The phantoms used in such studies must have well-characterised optical and acoustic properties similar to tissue, and be versatile and stable. Polyvinyl chloride plastisol (PVCP) has been suggested as a phantom for quality control and system evaluation. By characterising its multiwavelength optical properties, broadband acoustic properties and thermoelastic behaviour, this paper examines its potential as a phantom for qPAI studies too. PVCP's acoustic properties were assessed for various formulations, as well as its intrinsic optical absorption, and scattering with added TiO2, over a range of wavelengths from 400-2000 nm. To change the absorption coefficient, pigment-based chromophores that are stable during the phantom fabrication process, were used. These yielded unique spectra analogous to tissue chromophores and linear with concentration. At the high peak powers typically used in photoacoustic imaging, nonlinear optical absorption was observed. The Grüneisen parameter was measured to be Γ\Gamma   =  1.01  ±  0.05, larger than typically found in tissue, though useful for increased PA signal. Single and multiwavelength 3D PA imaging of various fabricated PVCP phantoms were demonstrated

    Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor

    Get PDF
    A laser scanning optical resolution photoacoustic microscopy (LS OR-PAM) system based on a stationary fibre optic sensor is described. The sensor comprises an optically resonant interferometric polymer cavity formed on the tip of a rounded single mode optical fibre. It provides low noise equivalent pressure (NEP = 68.7 Pa over a 20 MHz measurement bandwidth), a broad bandwidth that extends to 80 MHz and a near omnidirectional response. The latter is a significant advantage, as it allows large areas ( > 1cm 2 ) to be imaged without the need for translational mechanical scanning offering the potential for fast image acquisition. The system provides a lateral resolution of 8 µm, an axial resolution of 21 µm, and a field of view up to 10 mm × 10 mm. To demonstrate the system, in vivo 3D structural images of the microvasculature of a mouse ear were obtained, showing single capillaries overlaying larger vessels as well as functional images revealing blood oxygen saturation

    Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance

    Get PDF
    A miniature flexible photoacoustic endoscopy probe that provides high-resolution 3D images of vascular structures in the forward-viewing configuration is described. A planar Fabry-Perot ultrasound sensor with a -3dB bandwidth of 53 MHz located at the tip of the probe is interrogated via a flexible fiber bundle and a miniature optical relay system to realize an all-optical probe measuring 7.4 mm in outer diameter at the tip. This approach to photoacoustic endoscopy offers advantages over previous piezoelectric based distal-end scanning probes. These include a forward-viewing configuration in widefield photoacoustic tomography mode, finer spatial sampling (87 µm spatial sampling interval), and wider detection bandwidth (53 MHz) than has been achievable with conventional ultrasound detection technology and an all-optical passive imaging head for safe endoscopic use

    Photoacoustic imaging with a multi-view Fabry-Perot scanner

    Get PDF
    Planar Fabry-Pérot (FP) ultrasound sensor arrays have been used to produce in-vivo photoacoustic images of high quality due to their broad detection bandwidth, small element size, and dense spatial sampling. However like all planar arrays, FP sensors suffer from the limited view problem. Here, a multi-angle FP sensor system is described that mitigates the partial view effects of a planar FP sensor while retaining its detection advantages. The possibility of improving data acquisition speed through the use of sub-sampling techniques is also explored. The capabilities of the system are demonstrated with 3D images of pre-clinical targets

    Rapid Spatial Mapping of Focused Ultrasound Fields Using a Planar Fabry-Pérot Sensor

    Get PDF
    Measurement of high acoustic pressures is necessary in order to fully characterise clinical high-intensity focused ultrasound (HIFU) fields, and for accurate validation of computational models of ultrasound propagation. However, many existing measurement devices are unable to withstand the extreme pressures generated in these fields, and those that can often exhibit low sensitivity. Here, a planar Fabry-Pérot interferometer with hard dielectric mirrors and spacer was designed, fabricated, and characterised and its suitability for measurement of nonlinear focused ultrasound fields was investigated. The noise equivalent pressure of the scanning system scaled with the adjustable pressure detection range between 49 kPa for pressures up to 8 MPa and 152 kPa for measurements up to 25 MPa, over a 125 MHz measurement bandwidth. Measurements of the frequency response of the sensor showed that it varied by less than 3 dB in the range 1 - 62 MHz. The effective element size of the sensor was 65 μm and waveforms were acquired at a rate of 200 Hz. The device was used to measure the acoustic pressure in the field of a 1.1 MHz single element spherically focused bowl transducer. Measurements of the acoustic field at low pressures compared well with measurements made using a PVDF needle hydrophone. At high pressures, the measured peak focal pressures agreed well with the focal pressure modelled using the Khokhlov-Zabolotskaya-Kuznetsov equation. Maximum peak positive pressures of 25 MPa, and peak negative pressures of 12 MPa were measured, and planar field scans were acquired in scan times on the order of 1 minute. The properties of the sensor and scanning system are well suited to measurement of nonlinear focused ultrasound fields, in both the focal region and the low pressure peripheral regions. The fast acquisition speed of the system and its low noise equivalent pressure are advantageous, and with further development of the sensor, it has potential in application to HIFU metrology

    Pencil beam all-optical ultrasound imaging

    Get PDF
    A miniature, directional fibre-optic acoustic source is presented that employs geometrical focussing to generate a nearly-collimated acoustic pencil beam. When paired with a fibre-optic acoustic detector, an all-optical ultrasound probe with an outer diameter of 2.5 mm is obtained that acquires a pulse-echo image line at each probe position without the need for image reconstruction. B-mode images can be acquired by translating the probe and concatenating the image lines, and artefacts resulting from probe positioning uncertainty are shown to be significantly lower than those observed for conventional synthetic aperture scanning of a non-directional acoustic source. The high image quality obtained for excised vascular tissue suggests that the all-optical ultrasound probe is ideally suited for in vivo, interventional applications
    corecore