36 research outputs found

    pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    Get PDF
    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst

    Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection

    Get PDF
    cDNA-AFLP methodology was used to gain insight into gene fragments differentially present in the mRNA profiles of Quercus suber roots infected with zoospores of Phytophthora cinnamomi at different post challenge time points. Fifty-three transcript-derived fragments (TDFs) were identified and sequenced. Six candidate genes were selected based on their expression patterns and homology to genes known to play a role in defence. They encode a cinnamyl alcohol dehydrogenase2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), a thaumatin-like protein (QsTLP), a chitinase (QsCHI) and a 1,3-Ξ²-glucanase (QsGlu). Evaluation of the expression of these genes by quantitative polymerase chain reaction (qPCR) revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the first 24 h post-inoculation, while those of thaumatin-like protein decreased. No differential expression was observed for 1,3-Ξ²-glucanase (QsGlu).Four candidate reference genes, polymerase II (QsRPII), eukaryotic translation initiation factor 5A (QsEIF-5A), Ξ²-tubulin (QsTUB) and a medium subunit family protein of clathrin adaptor complexes (QsCACs) were assessed to determine the most stable internal references for qRT-PCR normalization in the Phytophthora-Q. suber pathosystem in root tissues. Those found to be more stable, QsRPII and QsCACs, were used as internal reference in the present work.Knowledge on the Quercus defence mechanisms against biotic stress is scarce. This study provides an insight into the gene profiling of a few important genes of Q. suber in response to P. cinnamomi infection contributing to the knowledge of the molecular interactions involving Quercus and root pathogens that can be useful in the future to understand the mechanisms underlying oak resistance to soil-borne oomycetes.Peer Reviewe

    Barley Chloroplasts Contain 2 Acyl Carrier Proteins Coded for by Different Genes

    No full text

    Isolation and characterisation of a cDNA encoding rat mitochondrial GrpE, a stress-inducible nucleotide-exchange factor of ubiquitous appearance in mammalian organs

    Get PDF
    AbstractIn contrast to the E. coli chaperones DnaK, GroEL and GroES, cDNAs encoding mitochondrial homologues of DnaJ and GrpE from higher eukaryotes have yet to be reported. Based on peptide sequences, we have isolated a cDNA encoding a 217 residue nuclear encoded precursor of rat mitochondrial GrpE (mt-GrpE) including a typical mitochondrial presequence of 27 residues. Western blotting revealed that the 21 kDa GrpE homologue is present exclusively in the mitochondrial fraction where it comprises only ∼0.03% of the total soluble protein, while Northern blotting showed that the mt-GrpE transcript is present in most if not all organs. By contrast to other mitochondrial chaperones, the levels of mt-GrpE and its transcript in cultured cells are only marginally increased in response to the proline analog l-azetidine 2-carboxylic acid but not by heat shock. Furthermore, members of the GrpE family exhibit a much lower degree of sequence identity than do the well studied members of the Hsp70, Hsp60 and Hsp10 families

    Characterization of Novel Hsp70 in Mammalian-Cells

    No full text
    corecore