654 research outputs found

    Degeneracy Between the Regge Slope of Mesons and Baryons from Supersymmetry

    Full text link
    We consider the degeneracy between the Regge slope of mesons and baryons in QCD. We argue that within the "orientifold large-N approximation" asymptotically massive mesons and baryons become supersymmetric partners and hence degenerate. To this end, we generalize QCD by a SU(N) theory with a quark in the two-index antisymmetric representation. We show that in this framework the meson is represented by an oriented bosonic QCD-string and the baryon is represented by an un-oriented fermionic QCD-string. At large-N, due to an equivalence with super Yang-Mills, the tensions of the bosonic and the fermionic strings coincide. Our description of mesons and baryons as oriented and un-oriented bosonic and fermionic QCD-strings is in full agreement with the spectra of open strings in the dual type 0' string theory.Comment: v2: extended version. Appendices and references adde

    A precise determination of the psibar-psi anomalous dimension in conformal gauge theories

    Full text link
    A strategy for computing the psibar-psi anomalous dimension at the fixed point in infrared-conformal gauge theories from lattice simulations is discussed. The method is based on the scaling of the spectral density of the Dirac operator or rather its integral, the mode number. It is relatively cheap, mainly for two reasons: (a) the mode number can be determined with quite high accuracy, (b) the psibar-psi anomalous dimension is extracted from a fit of several observables on the same set of configurations (no scaling in the Lagrangian parameters is needed). As an example the psibar-psi anomalous dimension has been computed in the SU(2) theory with 2 Dirac fermions in the adjoint representation of the gauge group, and has been found to be 0.371(20). In this particular case, the proposed strategy has proved to be very robust and effective.Comment: LaTeX, 16 pages, 3 PDF figures, [v3] minor cosmetic change

    Anodic Alumina Membranes: From Electrochemical Growth to Use as Template for Fabrication of Nanostructured Electrodes

    Get PDF
    The great success of anodic alumina membranes is due to their morphological features coupled to both thermal and chemical stability. The electrochemical fabrication allows accurate control of the porous structure: in fact, the membrane morphological characteristics (pore length, pore diameter and cell density) can be controlled by adjusting the anodizing parameters (bath, temperature, voltage and time). This article deals with both the fabrication and use of anodic alumina membranes. In particular, we will show the specific role of the addition of aluminum ions to phosphoric acid-based anodizing solution in modifying the morphology of anodic alumina membranes. Anodic alumina membranes were obtained at −1◩ C in aqueous solutions of 0.4 M H3 PO4 added with different amounts of Al(OH)3 . For sake of completeness, the formation of PAA in pure 0.4 M H3 PO4 in otherwise identical conditions was also investigated. We found that the presence of Al(OH)3 in solution highly affects the morphology of the porous layer. In particular, at high Al(OH)3 concentration (close to saturation) more compact porous layers were formed with narrow pores separated by thick oxide. The increase in the electric charge from 20 to 160 C cm−2 also contributes to modifying the morphology of porous oxide. The obtained anodic alumina membranes were used as a template to fabricate a regular array of PdCo alloy nanowires that is a valid alternative to Pt for hydrogen evolution reaction. The PdCo alloy was obtained by electrodeposition and we found that the composition of the nanowires depends on the concentration of two metals in the deposition solution

    Early outcome of anatomical lung resection for non-small cell lung cancer in the elderly

    Full text link
    OBJECTIVE Surgery is the mainstay of early-stage lung cancer treatment. However, since life expectancy is constantly increasing, we wanted to investigate whether this principle also applies to elderly (≄70-year-old) patients. PATIENTS AND METHODS We analyzed a prospectively maintained database on anatomical lung resections at our institute. Patients were divided in two groups: <70 years and ≄70 years (elderly). Outcome indicators were postoperative cardiopulmonary complications rate and 30-day readmission rate. Baseline and surgical characteristics were compared by mean of t-test, Mann-Whitney U test, chi2 and Fisher exact tests. Propensity score matching was performed to account for differences between groups in the outcome's analysis. RESULTS We selected 241 patients with lung cancer (2017-2021) who underwent anatomical lung resections. Median age was 70.5 (IQR: 64-76). 133 patients (54%) aged 70 and above. Patients and surgical characteristics (comorbidities, lung function, performance status, type and extension of lung resection and surgical approach) were similar among groups, except for atrial fibrillation (p=0.01) and previous cancer history (p<0.0001) which were more frequent in the elderly group. Non-elderly patients were more frequently active smokers (p<0.0001). Cardiopulmonary complications rate was 23%, 30-day readmission rate was 12.6%. We did not observe any significant difference in all the short-term outcome indicators between the elderly and the younger counterpart. Particularly, complications rate (p=0.91) and 30-day readmission (p=0.84) did not differ between groups. CONCLUSIONS In our series, short-term outcomes are not compromised in elderly patients. The evolution in surgical strategy and expertise contribute to offer surgical resection with curative intent for lung cancer to a large spectrum of patients

    Animal models of compulsive eating behavior

    Get PDF
    In industrialized nations, overeating is a significant problem leading to overweight, obesity, and a host of related disorders; the increase in these disorders has prompted a significant amount of research aimed at understanding their etiology. Eating disorders are multifactorial conditions involving genetic, metabolic, environmental, and behavioral factors. Considering that compulsive eating in the face of adverse consequences characterizes some eating disorders, similar to the way in which compulsive drug intake characterizes drug-addiction, it might be considered an addiction in its own right. Moreover, numerous review articles have recently drawn a connection between the neural circuits activated in the seeking/intake of palatable food and drugs of abuse. Based on this observation, “food addiction” has emerged as an area of intense scientific research and accumulating evidence suggests it is possible to model some aspects of food addiction in animals. The development of well-characterized animal models would advance our understanding of the etiologic neural factors involved in eating disorders, such as compulsive overeating, and it would permit to propose targeted pharmacological therapies. However, to date, little evidence has been reported of continued food seeking and intake despite its harmful consequences in rats and mice

    TRANSCRIPTOMIC ANALYSIS OF WHOLE PISTILS AND OVULE CELLS TO IDENTIFY GENES RELATED TO APOSPORY IN HYPERICUM PERFORATUM L.

    Get PDF
    St. John\u2019s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Beside the pharmaceutical interest, recently gained information has shown that H. perforatum is also an attractive model system for the study of aposporous apomixis, that is a reproductive strategy, which, unlike sexual reproduction, permits the inheritance of the maternal genome over generations without genetic recombination events. This asexual mode of seed formation is believed to be a trait with enormous economic and social potential in agriculture. Its innovative use in this area relies upon the idea that indefinitely fixing highly complex genotypes, including hybrid cultivars, through apomixis would have tremendous advantages in plant breeding, biomass and seed production. During the last decades, the understanding of the molecular basis of apomixis in this species has been complicated by the lack of biological data, e.g. genomic or even transcriptomic sequences. The aim of our research project was the sequencing, annotation and comparative investigation of the H. perforatum flower transcriptome, as critical steps toward a better understanding of the genetic control of aposporic and sexual reproduction in the facultative apomict H. perforatum. To this end, next generation sequencing technologies have been used to sequence the flower transcriptomes of obligate sexual and unrelated apomictic H. perforatum genotypes. This approach has enabled the assembly and annotation of large cDNA repositories and their exploitation to design a custom array to be used in flower expression studies. Global gene expression analysis of H. perforatum was initially performed on ovaries collected from sexual and aposporic plant accessions for the purpose of identifying genes and processes potentially associated with apomixis in this model species. Overall, across two selected developmental stages, 224 and 973 unigenes were found to be significantly upand down-regulated. Ontological annotation of differentially expressed genes indicated that terms related to cell cycle, single-organism cellular process DNA (cytosine-5-)-methyltransferase activity, among others, were significantly enriched. In a following step, a laser-capture microdissection approach was adopted in combination the RNA-seq technology with the aim of identifying genes differentially expressed in the ovule cell types primarily involved in the differentiation of the megaspore mother cells and aposporous initials. On the whole, our data suggest that phenotypic expression of apospory is concomitant with the modulation of key genes involved in the sexual reproductive pathway and the responsive to hormonal stimuli. Annotation of all identified flower transcripts as well as their qualitative and quantitative expression data will be presented and critically discussed as they prove a far better understanding of molecular bases of pistil development, embyo sac and egg cell formation in sexual and apomictic H. perforatum

    Meandering of instantaneous large-scale structures in open-channel flow over longitudinal ridges

    Get PDF
    The results of large-eddy simulations of open-channel flows over spanwise heterogeneous surface ridges at two representative spanwise spacings are presented. Flows at moderate Froude and Reynolds numbers over smooth channel beds with streamwise-orientated rectangular ridges are considered. The ridge spacing has a profound effect on the flow: at small spacing relatively small secondary cells occur, whilst at large ridge spacing secondary cells occupy the entire flow depth. The instantaneous flow features secondary flow instabilities and the meandering of alternating low- and high-momentum regions. The quasi-periodical nature of the meandering of the instantaneous large-scale motion is visualised and quantified for both ridge spacings. Although time-averaged clockwise and counter-clockwise secondary current cells are symmetrical about the ridge-axis, they exhibit quasi-periodical increase and decrease in size as well as lateral and vertical movement in space over the meandering period

    Large-volume results in SU(2) with adjoint fermions

    Get PDF
    8 pages, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July-3 August 2013, Mainz, GermanyTaming finite-volume effects is a crucial ingredient in order to identify the existence of IR fixed points. We present the latest results from our numerical simulations of SU(2) gauge theory with 2 Dirac fermions in the adjoint representation on large volumes. We compare with previous results, and extrapolate to thermodynamic limit when possible

    High-performance lead-acid batteries enabled by Pb and PbO2 nanostructured electrodes: Effect of operating temperature

    Get PDF
    Lead-acid batteries are now widely used for energy storage, as result of an established and reliable technology. In the last decade, several studies have been carried out to improve the performance of this type of batteries, with the main objective to replace the conventional plates with innovative electrodes with improved stability, increased capacity and a larger active surface. Such studies ultimately aim to improve the kinetics of electrochemical conversion reactions at the electrode-solution interface and to guarantee a good electrical continuity during the repeated charge/discharge cycles. To achieve these objectives, our contribution focuses on the employment of nanostructured electrodes. In particular, we have obtained nanostructured electrodes in Pb and PbO2 through electrosynthesis in a template consisting of a nanoporous polycarbonate membrane. These electrodes are characterized by a wider active surface area, which allows for a better use of the active material, and for a consequent increased specific energy compared to traditional batteries. In this research, the performance of lead-acid batteries with nanostructured electrodes was studied at 10 C at temperatures of 25, −20 and 40 °C in order to evaluate the efficiency and the effect of temperature on electrode morphology. The batteries were assembled using both nanostructured electrodes and an AGM-type separator used in commercial batteries
    • 

    corecore