2,287 research outputs found

    Models for TMDs and numerical methods

    Full text link
    We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation can not be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum.Comment: 43 pages, 8 figures; proceedings of International School of Physics "Enrico Fermi", Course CLXXX - "Three-dimensional Partonic Structure of the Nucleon", 28 June - 8 July 2011, Varenna (Italy

    On the Origin of Model Relations among Transverse-Momentum Dependent Parton Distributions

    Get PDF
    Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark-model relations among TMDs are reviewed, elucidating their physical origin in terms of the quark-spin structure in the nucleon. The formal aspects of the derivation of these relations are complemented with explicit examples, emphasizing how and to which extent the conditions which lead to relations among TMDs are implemented in different classes of quark models.Comment: 38 pages, 3 figures, 3 table

    Modeling the transverse momentum dependent parton distributions

    Full text link
    We review quark model calculations of the transverse momentum dependent parton distributions (TMDs). For the T-even TMDs, we discuss the physical origin of model relations which hold in a large class of quark models. For the T-odd TMDs we review results in a light-cone constituent quark model (CQM) with the final state interaction effects generated via single-gluon exchange mechanism. As phenomenological application, we show the good agreement between results in the light-cone CQM and available experimental data for the Collins asymmetry.Comment: 8 pages, 2 figures, 2 tables; invited talk at "The 4th Workshop on Exclusive Reactions at High Momentum Transfer", Jefferson Lab., May 18-21, 201

    Beryllium abundances along the evolutionary sequence of the open cluster IC 4651 - New test for hydrodynamical stellar models

    Full text link
    [abridged] Previous analyses of lithium abundances in main sequence and red giant stars have revealed the action of mixing mechanisms other than convection in stellar interiors. Beryllium abundances in stars with lithium abundance determinations can offer valuable complementary information on the nature of these mechanisms. Our aim is to derive beryllium abundances along the whole evolutionary sequence of an open cluster, IC 4651. These Be abundances are used together with previously determined Li abundances, in the same sample stars, to investigate the mixing mechanisms in a range of stellar masses and evolutionary stages. New beryllium abundances are determined from high-resolution, high signal-to-noise UVES spectra using spectrum synthesis and model atmospheres. The careful synthetic modelling of the Be lines region is used to calculate reliable abundances in rapidly rotating stars. The observed behavior of Be and Li is compared to theoretical predictions from stellar models including rotation-induced mixing, internal gravity waves, atomic diffusion, and thermohaline mixing. Beryllium is detected in all the main sequence and turn-off sample stars, both slow- and fast-rotating stars, including the Li-dip stars, but was not detected in the red giants. Confirming previous results, we find that the Li dip is also a Be dip, although the depletion of Be is more modest than that of Li in the corresponding effective temperature range. For post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung gap than expected from classical predictions as does the Li dilution. A clear dispersion in the Be abundances is also observed. Theoretical stellar models including the hydrodynamical transport processes mentioned above are able to reproduce well all the observed features.Comment: 12 pages, accepted for publication in A&A, revised final versio

    Testing the LCDM model (and more) with the time evolution of the redshift

    Full text link
    With the many ambitious proposals afoot for new generations of very large telescopes, along with spectrographs of unprecedented resolution, there arises the real possibility that the time evolution of the cosmological redshift may, in the not too distant future, prove to be a useful tool rather than merely a theoretical curiosity. Here I contrast this approach with the standard cosmological procedure based on the luminosity (or any other well-defined) distance. I then show that such observations would not only provide a direct measure of all the associated cosmological parameters of the LCDM model, but would also provide wide-ranging internal consistency checks. Further, in a more general context, I show that without introducing further time derivatives of the redshift one could in fact map out the dark energy equation of state should the LCDM model fail. A consideration of brane-world scenarios and interacting dark energy models serves to emphasize the fact that the usefulness of such observations would not be restricted to high redshifts.Comment: In final form as to appear in Physical Review D. 12 pages 6 figure

    Light-Front Densities for Transversely Polarized Hadrons

    Full text link
    We discuss the recent interpretation of quark distribution functions in the plane transverse to the light-cone direction. Such a mapping is model independent and allows one to build multidimensional pictures of the hadron and to develop a semi-classical intuition of the quark dynamics. We comment briefly the results obtained from the Form Factors of the nucleon. A generalization to a target with arbitrary spin led to a set of preferred values for the electromagnetic coupling characterizing structureless particles. Generalized polarizabilities can also be interpreted in that frame as the distortion of the charge densities due to an external electromagnetic field. Finally, we present preliminary results for the Generalized Transverse-Momentum dependent Distributions which encode in principle the most complete information about quark distributions.Comment: 8 pages, 2 figures, 1 table; contribution to the proceedings of "The 4th Workshop on Exclusive Reactions at High Momentum Transfer", Jefferson Lab., May 18-21, 201

    Transverse pion structure beyond leading twist in constituent models

    Get PDF
    The understanding of the pion structure as described in terms of transverse-momentum dependent parton distribution functions (TMDs) is of importance for the interpretation of currently ongoing Drell-Yan experiments with pion beams. In this work we discuss the description of pion TMDs beyond leading twist in a pion model formulated in the light-front constituent framework. For comparison, we also review and derive new results for pion TMDs in the bag and spectator models.Comment: 17 pages, 7 figures; v2: modified presentation, updated references; matches the journal versio

    Naive time-reversal odd phenomena in semi-inclusive deep-inelastic scattering from light-cone constituent quark models

    Full text link
    We present results for leading-twist azimuthal asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to naively time-reversal odd transverse-momentum dependent parton distribution functions from the light-cone constituent quark model. We carefully discuss the range of applicability of the model, especially with regard to positivity constraints and evolution effects. We find good agreement with available experimental data from COMPASS and HERMES, and present predictions to be tested in forthcoming experiments at Jefferson Lab.Comment: 10 pages, 7 figures, discussion of evolution effects extended, to appear in Phys.Rev.

    Light-front interpretation of Proton Generalized Polarizabilities

    Full text link
    We extend the recently developed formalism to extract light-front quark charge densities from nucleon form factor data to the deformations of these quark charge densities when applying an external electric field. We show that the resulting induced polarizations can be extracted from proton generalized polarizabilities. The available data for the generalized electric polarizabilitiy of the proton yield a pronounced structure in its induced polarization at large transverse distances, which will be pinned down by forthcoming high precision virtual Compton scattering experiments.Comment: 4 pages, 4 figures, reference added, minor typos correcte
    • …
    corecore