185 research outputs found

    Spin-phonon coupling in Gd(Co1/2Mn1/2)O3 perovskite

    Full text link
    We have investigated the temperature-dependent Raman-active phonons and the magnetic properties of Gd(Co1/2Mn1/2)O3 perovskite ceramics in the temperature range from 40 K to 300 K. The samples crystallized in an orthorhombic distorted simple perovskite, whose symmetry belongs to the Pnma space group. The data reveals spin-phonon coupling near the ferromagnetic transition occurring at around 120 K. The correlation of the Raman and magnetization data suggests that the structural order influences the magnitude of the spin-phonon coupling.Comment: 3 Figures, suplementary materia

    Mechanisms Underlying Gas Exchange Alterations In An Experimental Model Of Pulmonary Embolism.

    Get PDF
    The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 +/- 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 +/- 8.64 to 39.14 +/- 6.77 mmHg) and alveolar air (from 92.97 +/- 2.14 to 63.91 +/- 8.27 mmHg). The effective alveolar ventilation exhibited a significant reduction (from 199.62 +/- 42.01 to 84.34 +/- 44.13) consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio) also presented a significant reduction after embolization (from 0.96 +/- 0.34 to 0.33 +/- 0.17 fraction). The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 +/- 1.71 to 60.76 +/- 6.62 mmHg), but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 +/- 1.22 to 23.15 +/- 8.24 mmHg). Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 +/- 1.36 to 37.61 +/- 12.79 mmHg), as also did the calculated alveolar (from 56.38 +/- 22.47 to 178.09 +/- 37.46 mL) and physiological (from 0.37 +/- 0.05 to 0.75 +/- 0.10 fraction) dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution induced by hypocapnic bronchoconstriction.391197-20

    Relaxations in Ba2BiSbO6 Double Complex Perovskite Ceramics

    Get PDF
    The electric properties of the complex double perovskite Ba2BiSbO6 have been investigated using impedance spectroscopy in the frequency range from 1 Hz up to 1 MHz and in the temperature range from room temperature up to 560 K. There are two contributions to the electrical properties due to the grain and grain boundary. The oxygen vacancies play an important role in the conductivity and strongly increase the dielectric constant at high temperatures. The analysis of the frequency dependence of the conductivity clearly shows the structural phase transition of this compound near 515 K
    • …
    corecore