355 research outputs found

    Branched covers of the sphere and the prime-degree conjecture

    Get PDF
    To a branched cover between closed, connected and orientable surfaces one associates a "branch datum", which consists of the two surfaces, the total degree d, and the partitions of d given by the collections of local degrees over the branching points. This datum must satisfy the Riemann-Hurwitz formula. A "candidate surface cover" is an abstract branch datum, a priori not coming from a branched cover, but satisfying the Riemann-Hurwitz formula. The old Hurwitz problem asks which candidate surface covers are realizable by branched covers. It is now known that all candidate covers are realizable when the candidate covered surface has positive genus, but not all are when it is the 2-sphere. However a long-standing conjecture asserts that candidate covers with prime degree are realizable. To a candidate surface cover one can associate one Y -> X between 2-orbifolds, and in a previous paper we have completely analyzed the candidate surface covers such that either X is bad, spherical, or Euclidean, or both X and Y are rigid hyperbolic orbifolds, thus also providing strong supporting evidence for the prime-degree conjecture. In this paper, using a variety of different techniques, we continue this analysis, carrying it out completely for the case where X is hyperbolic and rigid and Y has a 2-dimensional Teichmueller space. We find many more realizable and non-realizable candidate covers, providing more support for the prime-degree conjecture

    Synthesis and characterization of UV-curable nanocellulose/ZnO/AlN acrylic flexible films: thermal, dynamic mechanical and piezoelectric response

    Get PDF
    This work is aimed at fabricating nanocomposites based on zinc oxide (ZnO) nanostructures and nanocellulose dispersed in a UV-cured acrylic matrix (EC) for application as functional coatings for self-powered applications. Morphological, thermal, and dynamic mechanical properties of the nanocomposites were characterized by X-Ray diffractometry (XRD), scanning electron microscopy, and differential scanning calorimetry. The piezoelectric behavior was evaluated in terms of root mean square (RMS) open circuit voltage, at different accelerations applied to cantilever beams. The generated voltage was correlated with ZnO nanostructures morphology, aluminum nitride film integration on the beam and proof mass insertion at the tip. Nitride layer increased the RMS voltage from 1 to 2.4 mV up to 3.9 mV (using ZnO nanoflowers). As confirmed by XRD analyses, the incorporation of ZnO nanostructures into the acrylic matrix favored an ordered structural arrangement of the deposited AlN layer, hence improving the piezoelectric response of the resulting nanocomposites. With proof mass insertion, the output voltage was further increased, reaching 4.5 mV for the AlN-coated system containing ZnO nanoflowers

    Developing Central Nervous System and Vulnerability to Platinum Compounds

    Get PDF
    Comparative studies on the effects of the platinum complexes in use or in clinical trials are carried out in order to discover differences in the neurotoxic potential and the reversibility of neurotoxicity. In this paper, we summarized the current literature on neurotoxicity and chemoresistance of cisplatin (cisPt) and discussed our recent efforts on the interference of cisPt and a new platinum compound [Pt(O,O′-acac)(γ-acac)(DMS)] (PtAcacDMS), with high specific reactivity with sulphur ligands instead of nucleobases as cisPt, on some crucial events of rat postnatal cerebellum development. The acute effects of drug treatments on cell proliferation and death in the external granular layer and granule cell migration and the late effects on the dendrite growth of Purkinje cells were evaluated. Together with the demonstrated antineoplastic effectiveness in vitro, compared with cisPt, data suggest a lower neurotoxicity of PtAcacDMS, in spite of its presence in the brain that involves considerations on the blood brain barrier permeability

    Signaling Cross-Talk between Salicylic and Gentisic Acid in the ‘Candidatus Phytoplasma Solani’ Interaction with Sangiovese Vines

    Get PDF
    “Bois noir” disease associated with ‘Candidatus Phytoplasma solani’ seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma–grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of ‘Ca. P. solani’-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in ‘Ca. P. solani-positive plants compared to -negative ones during the observed period

    Fetal and Infant Effects of Maternal Opioid Use during Pregnancy: A Literature Review including Clinical, Toxicological, Pharmacogenomic, and Epigenetic Aspects for Forensic Evaluation

    Get PDF
    The two primary classes of opioid substances are morphine and its synthetic derivative, heroin. Opioids can cross the placental barrier, reaching fetal circulation. Therefore, at any gestational age, the fetus is highly exposed to pharmacologically active opioid metabolites and their associated adverse effects. This review aimed to investigate all the studies reported in a timeframe of forty years about prenatal and postnatal outcomes of opioid exposition during pregnancy. Clinical and toxicological aspects, as well as pharmacogenetic and epigenetic research focusing on fetal and infant effects of opioid use during pregnancy together with their medico-legal implications are exposed and discussed

    In vivo [64Cu]CuCl2 PET imaging reveals activity of Dextran-Catechin on tumor copper homeostasis

    Get PDF
    Given the strong clinical evidence that copper levels are significantly elevated in a wide spectrum of tumors, copper homeostasis is considered as an emerging target for anticancer drug design. Monitoring copper levels in vivo is therefore of paramount importance when assessing the efficacy of copper-targeting drugs. Herein, we investigated the activity of the copper-targeting compound Dextran-Catechin by developing a [64Cu]CuCl2 PET imaging protocol to monitor its effect on copper homeostasis in tumors. Methods: Protein expression of copper transporter 1 (CTR1) in tissue microarrays representing 90 neuroblastoma patient tumors was assessed by immunohistochemistry. Western blotting analysis was used to study the effect of Dextran-Catechin on the expression of CTR1 in neuroblastoma cell lines and in tumors. A preclinical human neuroblastoma xenograft model was used to study anticancer activity of Dextran-Catechin in vivo and its effect on tumor copper homeostasis. PET imaging with [64Cu]CuCl2 was performed in such preclinical neuroblastoma model to monitor alteration of copper levels in tumors during treatment. Results: CTR1 protein was found to be highly expressed in patient neuroblastoma tumors by immunohistochemistry. Treatment of neuroblastoma cell lines with Dextran-Catechin resulted in decreased levels of glutathione and in downregulation of CTR1 expression, which caused a significant decrease of intracellular copper. No changes in CTR1 expression was observed in normal human astrocytes after Dextran-Catechin treatment. In vivo studies and PET imaging analysis using the neuroblastoma preclinical model revealed elevated [64Cu]CuCl2 retention in the tumor mass. Following treatment with Dextran-Catechin, there was a significant reduction in radioactive uptake, as well as reduced tumor growth. Ex vivo analysis of tumors collected from Dextran-Catechin treated mice confirmed the reduced levels of CTR1. Interestingly, copper levels in blood were not affected by treatment, demonstrating potential tumor specificity of Dextran-Catechin activity. Conclusion: Dextran-Catechin mediates its activity by lowering CTR1 and intracellular copper levels in tumors. This finding further reveals a potential therapeutic strategy for targeting copper-dependent cancers and presents a novel PET imaging method to assess patient response to copper-targeting anticancer treatments

    Postmortem CT pulmonary findings in SARS-CoV-2-positive cases: correlation with lung histopathological findings and autopsy results

    Get PDF
    Introduction/purpose Postmortem computed tomography (PMCT) is a valuable tool for analyzing the death of patients with SARS-CoV-2 infection. The purpose of this study was to investigate the correlation between PMCT lung findings in autopsy cadavers positive for SARS-CoV-2 infection and the severity of COVID-19 lung disease by histopathological analysis.Materials and methods We reviewed chest PMCT findings, paying particular attention to the lung parenchyma, in 8 autopsy cases positive for SARS-CoV-2. Correlations between chest PMCT and histopathological findings were assessed. Clinical conditions and comorbidities were also recorded and discussed. The primary cause of death was finally considered.Results In 6/8 cases, pulmonary PMCT findings were massive consolidation (4/8) and bilateral diffuse mixed densities with a crazy-paving pattern (2/8). These cases showed severe pulmonary signs of COVID-19 at histopathological analysis. In the remaining 2/8 cases, pulmonary PMCT findings were scant antideclive ground-glass opacities in prevalent gradient densities attributed to hypostasis. In 4/8 cases with massive consolidations, important comorbidities were noted. In 6/8 cases with severe pulmonary histopathological signs of lung COVID-19, autopsy found that the cause of death was cardiorespiratory failure. In the remaining 2/8 cases, histopathological analysis revealed lung alterations due to edema and some signs of SARS-CoV-2 infection; the cause of death was not attributed to SARS-CoV-2 infection (Table 1).Discussion and conclusion Chest PMCT findings correlate with the severity of COVID-19 lung disease at histopathology examination. According to our results, there may also be a relationship between cause of death and PMCT findings in COVID-19, which must be critically analyzed considering clinical antemortem data

    SI-Lab Annual Research Report 2020

    Get PDF
    The Signal & Images Laboratory (http://si.isti.cnr.it/) is an interdisciplinary research group in computer vision, signal analysis, smart vision systems and multimedia data understanding. It is part of the Institute for Information Science and Technologies of the National Research Council of Italy. This report accounts for the research activities of the Signal and Images Laboratory of the Institute of Information Science and Technologies during the year 2020
    corecore