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Abstract

To a branched cover Σ̃ → Σ between closed, connected and orientable
surfaces one associates a branch datum, which consists of Σ and Σ̃,
the total degree d, and the partitions of d given by the collections
of local degrees over the branching points. This datum must satisfy
the Riemann-Hurwitz formula. A candidate surface cover is an ab-
stract branch datum, a priori not coming from a branched cover, but
satisfying the Riemann-Hurwitz formula. The old Hurwitz problem

asks which candidate surface covers are realizable by branched covers.
It is now known that all candidate covers are realizable when Σ has
positive genus, but not all are when Σ is the 2-sphere. However a
long-standing conjecture asserts that candidate covers with prime de-
gree are realizable. To a candidate surface cover one can associate one
X̃ 99KX between 2-orbifolds, and in [18] we have completely analyzed
the candidate surface covers such that either X is bad, spherical, or
Euclidean, or both X and X̃ are rigid hyperbolic orbifolds, thus also
providing strong supporting evidence for the prime-degree conjecture.
In this paper, using a variety of different techniques, we continue this
analysis, carrying it out completely for the case where X is hyperbolic
and rigid and X̃ has a 2-dimensional Teichmüller space. We find many
more realizable and non-realizable candidate covers, providing more
support for the prime-degree conjecture.

In this paper we push one step forward the approach via geometric 2-orbifolds
developed and first exploited in [18] to face the Hurwitz existence problem
for branched covers between surfaces. See [8] for the original source concern-
ing this problem, the classical [9, 23, 22, 4, 5, 3, 11, 2, 6, 12, 10], the more
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recent [1, 14, 15, 18, 20, 21, 16, 25], and below. In [18] we have determined
the realizability of all candidate surface branched covers having associated
candidate cover between 2-orbifolds with non-negative Euler characteristic
or between rigid hyperbolic 2-orbifolds. These results provided in particular
strong support for the long-standing conjecture [2] that a candidate cover
with prime total degree is always realizable. In this paper we consider the
case where in the associated candidate cover between 2-orbifolds the cov-
ered 2-orbifold is hyperbolic and rigid while the covering 2-orbifold has a
2-dimensional Teichmüller space. As a result we exhibit many new realizable
and non-realizable candidate surface branched covers, finding a confirmation
of the validity of the prime-degree conjecture for the cases under considera-
tion. To discuss realizability we use a variety of techniques developed over
the time by several authors, and some new ones. Some of the results proved
in this paper are also contained, with minor variations, in the PhD thesis [17]
of the first named author (University of Rome I, 2010).

The paper is organized as follows. In Section 1 we precisely state the
Hurwitz problem, fixing the notation we employ to treat it, and we outline
the classical results that motivate us to restrict our attention to one specific
instance of the problem. In Section 2 we discuss how geometric 2-orbifolds re-
late to the problem and allow to split it into some more specific subproblems,
stating the results of [18] where the easiest of these subproblems were solved.
In Section 3 we describe the next easiest subproblem of the Hurwitz existence
problem, which is treated in this paper, and we state the corresponding solu-
tion. This subproblem itself splits into two different cases, for each of which
one needs accomplish two tasks, namely to enumerate the relevant candidate
covers and to discuss their realizability. The required enumeration processes
for the two cases are carried out in Section 4. Next, Section 5 contains an
overview of the different techniques later used to discuss the realizability of
the candidate covers found. The discussion itself, again separately for the
two relevant cases, is finally carried out in Section 6.

1 (Candidate) surface branched covers,

and some known results

In this section we state the Hurwitz existence problem using the same lan-
guage and notation as in [18], and we very briefly review some by now classical
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results.

Branched covers Let Σ̃ and Σ be closed, connected, and orientable sur-
faces, and f : Σ̃ → Σ be a branched cover, i.e., a map locally modelled on

functions of the form (C, 0)
z 7→zk
−→(C, 0) with k > 1. If k > 1 then 0 in the

target C is a branching point, and k is the local degree at 0 in the source C.
There is a finite number n of branching points, and, removing all of them
from Σ and their preimages from Σ̃, we see that f induces a genuine cover of
some degree d. The collection (dij)

mi

j=1 of the local degrees at the preimages
of the i-th branching point is a partition Πi of d. We now define:

• ℓ(Πi) to be the length mi of Πi;

• Π as the set {Π1, . . . ,Πn} of all partitions of d associated to f ;

• ℓ(Π) to be the total length ℓ(Π1) + . . .+ ℓ(Πn) of Π.

Then multiplicativity of the Euler characteristic χ under genuine covers for
surfaces with boundary implies the classical Riemann-Hurwitz formula

χ(Σ̃)− ℓ(Π) = d·
(
χ(Σ)− n

)
. (1)

Candidate branched covers and the realizability problem Consider
again two closed, connected, and orientable surfaces Σ̃ and Σ, integers d > 2
and n > 1, and a set of partitions Π = {Π1, . . . ,Πn} of d, with Πi = (dij)

mi

j=1,
such that condition (1) is satisfied. We associate to these data the symbol

Σ̃
d:1

99K99K99K99K99K99K
(d11,...,d1m1

),...,(dn1,...,dnmn )
Σ

that we will call a candidate surface branched cover. A classical (and still
not completely solved) problem, known as the Hurwitz existence problem,
asks which candidate surface branched covers are actually realizable, namely
induced by some existent branched cover f : Σ̃ → Σ. A non-realizable
candidate surface branched cover will be called exceptional.

Over the last 50 years the Hurwitz existence problem was the object of a
wealth of papers, many of which were listed above. The combined efforts of
several mathematicians led in particular to the following results [9, 2]:

• If χ(Σ) 6 0 then any candidate surface branched cover is realizable,
i.e., the Hurwitz existence problem has a positive solution in this case;
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• If χ(Σ) > 0, i.e., if Σ is the 2-sphere S, there exist exceptional candidate
surface branched covers.

Remark 1.1. A version of the Hurwitz existence problem exists also for
possibly non-orientable Σ̃ and Σ. Condition (1) must be complemented in
this case with a few more requirements (some obvious, and one slightly less
obvious, see [20]). However it has been shown [3, 2] that again this generalized
problem always has a positive solution if χ(Σ) 6 0, and that the case where
Σ is the projective plane reduces to the case where Σ is the 2-sphere S.

According to the two facts stated, in order to face the Hurwitz existence
problem, it is not restrictive to assume the candidate covered surface Σ is
the 2-sphere S, which we will do henceforth. Considerable energy has been
devoted over the time to a general understanding of the exceptional candidate
surface branched covers in this case, and quite some progress has been made
(see for instance the survey of known results contained in [20], together with
the later papers [21, 16, 25]), but the global pattern remains elusive. In
particular the following conjecture proposed in [2] appears to be still open:

Conjecture 1.2. If Σ̃
d:1
99K

Π
S is a candidate surface branched cover and the

degree d is a prime number then the candidate is realizable.

The following fact, again established in [2], will serve to us as a motivation:

Proposition 1.3. If Conjecture 1.2 is true for candidate surface branched
covers having n = 3 branching points, then it is true in general.

We conclude this section by mentioning that all exceptional candidate
surface branched covers with n = 3 and d 6 20 were determined by computer
in [25]. There are very many of them, but none occurs for prime d.

2 Surface covers vs. 2-orbifold covers,

and more known results

A 2-orbifold X = Σ(p1, . . . , pn) is a closed orientable surface Σ with n cone
points of orders pi > 2, at which X has a singular differentiable structure
given by the quotient C/〈rot(2π/pi)〉, where rot(ϑ) : z 7→ eiϑ · z.
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Geometric 2-orbifolds W. Thurston [24] introduced the notion of orbifold
Euler characteristic

χorb
(
Σ(p1, . . . , pn)

)
= χ(Σ)−

n∑

i=1

(
1−

1

pi

)
,

and showed that:

• If χorb(X) > 0 then X is either bad (not covered by a surface in the
sense of orbifolds, see below) or spherical, namely the quotient of the
metric 2-sphere S2 under a finite isometric action;

• If χorb(X) = 0 (respectively, χorb(X) < 0) then X is Euclidean (re-
spectively, hyperbolic), namely the quotient of the Euclidean plane E2

(respectively, the hyperbolic plane H2) under a discrete isometric ac-
tion.

In addition, Thurston proved that, for a hyperbolic X with n cone points
and underlying surface of genus g, the Teichmüller space τ(X), namely the
space of hyperbolic structures on X up to isometries isotopic to the identity,
has real dimension 6(g − 1) + 2n.

Orbifold covers Again following Thurston [24] we call degree-d orbifold

cover a map f : X̃ → X between 2-orbifolds such that f−1(x) generically
consists of d points and locally making a diagram of the following form com-
mutative:

(C, 0)
id

−→ (C, 0)
↓ ↓

(X̃, x̃)
f

−→ (X, x)

where x̃ and x have cone orders p̃ and p = k ·p̃ respectively, and the vertical
arrows are the projections corresponding to the actions of 〈rot(2π/p̃)〉 and
〈rot(2π/p)〉, namely the maps defining the (possibly singular) local differen-
tiable structures at x̃ and x. Since this local model can be described by the
map z 7→ zk, we see that f induces a branched cover between the underlying
surfaces of X̃ and X . Using the orbifold language one can then state the
Riemann-Hurwitz formula (1) in the following equivalent fashion:

χorb(X̃) = d·χorb(X). (2)
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From surface to 2-orbifold candidate covers As one easily sees, dis-
tinct orbifold covers can induce the same surface branched cover (in the local
model, the two cone orders can be multiplied by one and the same integer).
However, as pointed out in [20], a surface branched cover has an “easiest”
associated orbifold cover, i.e., that with the smallest possible cone orders.
This carries over to candidate covers, as we will now spell out. Consider a
candidate surface branched cover

Σ̃
d:1

99K99K99K99K99K99K
(d11,...,d1m1

),...,(dn1,...,dnmn )
Σ

and define

pi = l.c.m.{dij : j = 1, . . . , mi}, pij = pi/dij,

X = Σ(p1, . . . , pn), X̃ = Σ̃
(
(pij)

j=1,...,mi

i=1,...,n

)

where “l.c.m.” stands for “least common multiple.” Then we have a pre-

ferred associated candidate 2-orbifold cover X̃
d:1
99KX satisfying χorb(X̃) =

d · χorb(X). Note that the original candidate surface branched cover cannot

be reconstructed from X̃,X, d alone, but it can if X̃
d:1
99KX is complemented

with the covering instructions

(p11, . . . , p1m1) 99K p1, . . . (pn1, . . . , pnmn
) 99K pn

that one can include in the symbol X̃
d:1
99KX itself, omitting the pij ’s equal to

1. Of course a candidate surface branched cover is realizable if and only if the
associated candidate 2-orbifold cover with appropriate covering instructions
is realizable.

Splitting the Hurwitz problem according to orbifold geometry We
have just shown that to each candidate surface branched cover one can attach
a preferred candidate orbifold cover X̃ 99KX . Following Thurston’s geomet-
ric picture of 2-orbifolds one can then split the Hurwitz existence problem
by restricting to the analysis of those candidate surface branched covers for
which in the associated X̃ 99KX the geometry of X and X̃ is prescribed,
and in the hyperbolic case the dimension of τ(X) and τ(X̃) also is. Note

that a candidate orbifold cover X̃ 99KX by definition satisfies the orbifold
version (2) of the Riemann-Hurwitz formula; therefore, X and X̃ have the
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same geometry, except possibly when one of them is bad and the other one
is spherical.

Having in mind to attack Conjecture 1.2 and taking into account Propo-
sition 1.3, one can actually restrict to the case where

• X is a triangular orbifold S(p, q, r), whence geometrically rigid,

and split the Hurwitz existence problem as described in the following table.

Subproblem Description

bad/S X is bad or spherical, namely χorb(X) > 0

E X is Euclidean, namely χorb(X) = 0

H(j) for j ∈ N X is hyperbolic and dim(τ(X̃)) = 2j

Known result In [18] we have completely solved the subproblems of the
Hurwitz existence problem described above as bad/S, as E, and as H(0),
finding the results described in the following table.

Subproblem Findings

bad/S

20 realizable isolated candidate covers, two infinite
families of realizable candidate covers, 11 exceptional
isolated candidate covers, and one infinite family of
exceptional candidate covers

E

14 infinite families of realizable candidate covers, two
infinite families of exceptional candidate covers, and
12 infinite families of candidate covers for which the
realizability was shown to be equivalent to an arithmetic
condition on the degree

H(0)
9 realizable isolated candidate covers and two isolated
exceptional candidate covers

We mention that the arithmetic conditions on the degree d in the solution
of subproblem E are given by congruences and/or by the fact that d belongs
to the image of some quadratic form N×N → N. Analyzing these conditions,
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for three of the families in the solution of subproblem E we were able to show
that the candidate cover is “exceptional with probability 1,” even though it
is realizable when its degree is prime, which we view as a strong supporting
evidence for Conjecture 1.2.

3 New results

We describe here the new contribution offered by the present paper, namely
the solution of subproblem H(1) of the Hurwitz existence problem. This
consists of the following steps:

• Enumeration of all the candidate surface branched covers having an
associated candidate orbifold cover of the form X̃ 99KX where X =
S(p, q, r) is a rigid hyperbolic 2-orbifold, namely such that 1

p
+ 1

q
+ 1

r
< 1,

and X̃ is hyperbolic with dim(τ(X̃)) = 2, namely X̃ = S(α, β, γ, δ)

with (α, β, γ, δ) 6= (2, 2, 2, 2), or X̃ = T (α) with α > 1, where T is the
torus;

• Discussion of realizability or exceptionality of all the candidate surface
covers enumerated.

The next statements summarize our results. Before giving them we under-
line that all the exceptional candidates we have found occur for composite
degree, which means that our results provide further supporting evidence for
Conjecture 1.2. We also mention that the tables of the next pages contain a
numbering of all the candidate covers we have found; these numbers will be
referred to throughout the paper.

Theorem 3.1. There exist precisely 146 candidate surface branched covers

Σ̃
d:1

99K99K99K
(Π1,Π2,Π3)

S for which in the associated candidate orbifold cover X̃ 99KX

one has that X and X̃ are hyperbolic of the form X = S(p, q, r) and X̃ =
S(α, β, γ, δ). Precisely 29 of these candidate surface covers are exceptional,
and the other 117 are realizable. The complete description of these candidate
covers, including the associated candidate orbifold covers and information on
their realizability, is contained in Tables 1 to 5.

Theorem 3.2. There exist precisely 22 candidate surface branched covers

Σ̃
d:1

99K99K99K
(Π1,Π2,Π3)

S for which in the associated candidate orbifold cover X̃ 99KX
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one has that X and X̃ are hyperbolic of the form X = S(p, q, r) and X̃ =
T (α). Precisely 5 of these candidate surface covers are exceptional, and the
other 17 are realizable. The complete description of these candidate covers,
including the associated candidate orbifold covers and information on their
realizability, is contained in Table 6.

Remark 3.3. The issue of enumerating the relevant candidate covers for
Theorems 3.1 and 3.2 is an elementary, though complicated, combinatorial
problem, and its solution presented below in Section 4 does not employ so-
phisticated techniques. On the other hand, to discuss realizability of the
candidates found, we describe in general terms in Section 5 and then we
exploit in Section 6 a variety of different geometric methods. As a matter
of fact, in some cases we offer new proofs of the known realizability or ex-
ceptionality of some candidates, and we establish the previously unknown
realizability or exceptionality for other candidates using two or more differ-
ent methods. Our aim here is to show that a wealth of different techniques
are already in place and should allow one to attack more and more advanced
instances of the Hurwitz existence problem, according to its splitting we have
proposed above in Section 2.

d Π1 Π2 Π3 Associated X̃ 99KX Realizable? #

5 (2,1,1,1) (4,1) (5) S(2, 2, 2, 4) 99KS(2, 4, 5) X 1

(3,1,1) (3,1,1) (5) S(3, 3, 3, 3) 99KS(3, 3, 5) X 2

(3,1,1) (4,1) (4,1) S(3, 3, 4, 4) 99KS(3, 4, 4) X 3

(2,2,1) (3,2) (4,1) S(2, 2, 3, 4) 99KS(2, 4, 6) X 4

6 (2,2,1,1) (4,1,1) (6) S(2, 2, 4, 4) 99KS(2, 4, 6) X 5

(2,2,1,1) (5,1) (5,1) S(2, 2, 5, 5) 99KS(2, 5, 5) X 6

(2,2,1,1) (4,2) (5,1) S(2, 2, 2, 5) 99KS(2, 4, 5) X 7

(3,1,1,1) (3,3) (5,1) S(3, 3, 3, 5) 99KS(3, 3, 5) X 8

(3,1,1,1) (3,3) (4,2) S(2, 3, 3, 3) 99KS(3, 3, 4) X 9

(3,3) (4,1,1) (4,1,1) S(4, 4, 4, 4) 99KS(3, 4, 4) X 10

(2,2,2) (3,2,1) (5,1) S(2, 3, 5, 6) 99KS(2, 5, 6) X 11

(2,2,2) (3,2,1) (4,2) S(2, 2, 3, 6) 99KS(2, 4, 6) X 12

Table 1. Candidate surface branched covers S
d:1

99K99K
(Π1,Π2,Π3)

S with associated hyperbolic

S(α, β, γ, δ) 99KS(p, q, r); continued in Tables 2 to 5.
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d Π1 Π2 Π3 Associated X̃ 99KX Realizable? #

7 (2,2,1,1,1) (3,3,1) (7) S(2, 2, 2, 3) 99KS(2, 3, 7) X 13

(2,2,2,1) (4,1,1,1) (7) S(2, 4, 4, 4) 99KS(2, 4, 7) X 14

(3,3,1) (3,3,1) (5,1,1) S(3, 3, 5, 5) 99KS(3, 3, 5) X 15

(3,3,1) (3,3,1) (4,2,1) S(2, 3, 3, 4) 99KS(3, 3, 4) X 16

(2,2,2,1) (3,3,1) (5,2) S(2, 2, 3, 5) 99KS(2, 3, 10) X 17

(2,2,2,1) (3,3,1) (4,3) S(2, 3, 3, 4) 99KS(2, 3, 12) X 18

(2,2,2,1) (4,2,1) (6,1) S(2, 2, 4, 6) 99KS(2, 4, 6) X 19

(2,2,2,1) (5,1,1) (6,1) S(2, 5, 5, 6) 99KS(2, 5, 6) X 20

8 (2,2,2,2) (4,1,1,1,1) (8) S(4, 4, 4, 4) 99KS(2, 4, 8) X 21

(2,2,2,1,1) (3,3,1,1) (8) S(2, 2, 3, 3) 99KS(2, 3, 8) X 22

(2,2,2,2) (3,2,2,1) (4,4) S(2, 3, 3, 6) 99KS(2, 4, 6) Excep 23

(2,2,2,2) (5,1,1,1) (7,1) S(5, 5, 5, 7) 99KS(2, 5, 7) X 24

(2,2,2,2) (5,1,1,1) (6,2) S(3, 5, 5, 5) 99KS(2, 5, 6) Excep 25

(2,2,2,2) (4,2,1,1) (7,1) S(2, 4, 4, 7) 99KS(2, 4, 7) X 26

(2,2,2,2) (4,2,1,1) (6,2) S(2, 3, 4, 4) 99KS(2, 4, 6) X 27

(2,2,2,2) (3,3,1,1) (5,3) S(3, 3, 3, 5) 99KS(2, 3, 15) Excep 28

(3,3,1,1) (3,3,1,1) (4,4) S(3, 3, 3, 3) 99KS(3, 3, 4) X 29

(2,2,2,2) (6,1,1) (6,1,1) S(6, 6, 6, 6) 99KS(2, 6, 6) X 30

(2,2,2,2) (4,2,2) (6,1,1) S(2, 2, 6, 6) 99KS(2, 4, 6) Excep 31

(2,2,2,1,1) (4,4) (6,1,1) S(2, 2, 6, 6) 99KS(2, 4, 6) X 32

9 (2,2,2,1,1,1) (3,3,3) (8,1) S(2, 2, 2, 8) 99KS(2, 3, 8) X 33

(2,2,2,2,1) (3,3,1,1,1) (9) S(2, 3, 3, 3) 99KS(2, 3, 9) X 34

(3,3,3) (3,3,3) (5,1,1,1,1) S(5, 5, 5, 5) 99KS(3, 3, 5) Excep 35

(3,3,3) (3,3,3) (4,2,1,1,1) S(2, 4, 4, 4) 99KS(3, 3, 4) Excep 36

(3,3,1,1,1) (3,3,3) (4,4,1) S(3, 3, 3, 4) 99KS(3, 3, 4) X 37

(2,2,2,2,1) (4,4,1) (7,1,1) S(2, 4, 7, 7) 99KS(2, 4, 7) X 38

(2,2,2,2,1) (4,4,1) (6,2,1) S(2, 3, 4, 6) 99KS(2, 4, 6) X 39

(2,2,2,2,1) (3,3,3) (5,3,1) S(2, 3, 5, 15) 99KS(2, 3, 15) X 40

(2,2,2,2,1) (3,3,3) (5,2,2) S(2, 2, 5, 5) 99KS(2, 3, 10) Excep 41

(2,2,2,2,1) (3,3,3) (4,3,2) S(2, 3, 4, 6) 99KS(2, 3, 12) X 42

10 (2,2,2,2,2) (3,3,1,1,1,1) (10) S(3, 3, 3, 3) 99KS(2, 3, 10) X 43

(2,2,2,2,1,1) (4,4,1,1) (5,5) S(2, 2, 4, 4) 99KS(2, 4, 5) X 44

(2,2,2,2,1,1) (3,3,3,1) (8,2) S(2, 2, 3, 4) 99KS(2, 3, 8) X 45

(2,2,2,2,1,1) (3,3,3,1) (9,1) S(2, 2, 3, 9) 99KS(2, 3, 9) X 46

(2,2,2,2,2) (5,5) (6,1,1,1,1) S(6, 6, 6, 6) 99KS(2, 5, 6) X 47

Table 2. Continued from Table 1.
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d Π1 Π2 Π3 Associated X̃ 99KX Realizable? #

10 (2,2,2,2,2) (4,2,2,1,1) (5,5) S(2, 2, 4, 4) 99KS(2, 4, 5) X 48

(2,2,2,2,2) (4,4,2) (7,1,1,1) S(2, 7, 7, 7) 99KS(2, 4, 7) Excep 49

(2,2,2,2,2) (4,4,2) (6,2,1,1) S(2, 3, 6, 6) 99KS(2, 4, 6) Excep 50

(2,2,2,2,2) (4,4,1,1) (8,1,1) S(4, 4, 8, 8) 99KS(2, 4, 8) X 51

(2,2,2,2,2) (4,4,1,1) (6,3,1) S(2, 4, 4, 6) 99KS(2, 4, 6) X 52

(2,2,2,2,2) (4,4,1,1) (6,2,2) S(3, 3, 4, 4) 99KS(2, 4, 6) X 53

(2,2,2,2,2) (3,3,3,1) (7,2,1) S(2, 3, 7, 14) 99KS(2, 3, 14) X 54

(2,2,2,2,2) (3,3,3,1) (5,4,1) S(3, 4, 5, 20) 99KS(2, 3, 20) X 55

(2,2,2,2,2) (3,3,3,1) (5,3,2) S(3, 6, 10, 15) 99KS(2, 3, 30) X 56

(2,2,2,2,2) (3,3,3,1) (4,3,3) S(3, 3, 4, 4) 99KS(2, 3, 12) Excep 57

(3,3,3,1) (3,3,3,1) (4,4,1,1) S(3, 3, 4, 4) 99KS(3, 3, 4) X 58

11 (2,2,2,2,2,1) (3,3,3,1,1) (10,1) S(2, 3, 3, 10) 99KS(2, 3, 10) X 59

(2,2,2,2,2,1) (4,4,2,1) (5,5,1) S(2, 2, 4, 5) 99KS(2, 4, 5) X 60

12 (2,2,2,2,2,1,1) (3,3,3,3) (10,1,1) S(2, 2, 10, 10) 99KS(2, 3, 10) X 61

(2,2,2,2,2,1,1) (3,3,3,3) (8,2,2) S(2, 2, 4, 4) 99KS(2, 3, 8) X 62

(2,2,2,2,2,1,1) (4,4,4) (5,5,1,1) S(2, 2, 5, 5) 99KS(2, 4, 5) X 63

(2,. . . ,2) (4,4,1,1,1,1) (6,6) S(4, 4, 4, 4) 99KS(2, 4, 6) X 64

(2,. . . ,2) (3,3,3,1,1,1) (11,1) S(3, 3, 3, 11) 99KS(2, 3, 11) X 65

(2,. . . ,2) (3,3,3,1,1,1) (10,2) S(3, 3, 3, 5) 99KS(2, 3, 10) X 66

(2,. . . ,2) (3,3,3,1,1,1) (9,3) S(3, 3, 3, 3) 99KS(2, 3, 9) X 67

(2,. . . ,2) (3,3,3,1,1,1) (8,4) S(2, 3, 3, 3) 99KS(2, 3, 8) X 68

(2,. . . ,2) (4,4,4) (8,1,1,1,1) S(8, 8, 8, 8) 99KS(2, 4, 8) Excep 69

(2,. . . ,2) (4,4,4) (6,3,1,1,1) S(2, 6, 6, 6) 99KS(2, 4, 6) X 70

(2,. . . ,2) (4,4,4) (6,2,2,1,1) S(3, 3, 6, 6) 99KS(2, 4, 6) X 71

(2,. . . ,2) (3,3,3,3) (7,3,1,1) S(3, 7, 21, 21) 99KS(2, 3, 21) Excep 72

(2,. . . ,2) (3,3,3,3) (7,2,2,1) S(2, 7, 7, 14) 99KS(2, 3, 14) Excep 73

(2,. . . ,2) (3,3,3,3) (6,4,1,1) S(2, 3, 12, 12) 99KS(2, 3, 12) Excep 74

(2,. . . ,2) (3,3,3,3) (5,4,2,1) S(4, 5, 10, 20) 99KS(2, 3, 20) Excep 75

(2,. . . ,2) (3,3,3,3) (5,3,3,1) S(3, 5, 5, 15) 99KS(2, 3, 15) Excep 76

(2,. . . ,2) (3,3,3,3) (5,3,2,2) S(6, 10, 15, 15) 99KS(2, 3, 30) Excep 77

(2,. . . ,2) (3,3,3,3) (4,3,3,2) S(3, 4, 4, 6) 99KS(2, 3, 12) Excep 78

(2,. . . ,2) (3,3,3,3) (4,4,3,1) S(3, 3, 4, 12) 99KS(2, 3, 12) Excep 79

(3,3,3,3) (3,3,3,3) (4,4,1,1,1,1) S(4, 4, 4, 4) 99KS(3, 3, 4) X 80

(2,. . . ,2) (5,5,1,1) (5,5,1,1) S(5, 5, 5, 5) 99KS(2, 5, 5) X 81

(2,. . . ,2) (4,4,2,2) (5,5,1,1) S(2, 2, 5, 5) 99KS(2, 4, 5) X 82

Table 3. Continued from Table 2.
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d Π1 Π2 Π3 Associated X̃ 99KX Realizable? #

13 (2,. . . ,2,1) (3,3,3,3,1) (8,4,1) S(2, 2, 3, 8) 99KS(2, 3, 8) X 83

(2,. . . ,2,1) (3,3,3,3,1) (11,1,1) S(2, 3, 11, 11) 99KS(2, 3, 11) X 84

(2,. . . ,2,1) (3,3,3,3,1) (10,2,1) S(2, 3, 5, 10) 99KS(2, 3, 10) X 85

(2,. . . ,2,1) (3,3,3,3,1) (9,3,1) S(2, 3, 3, 9) 99KS(2, 3, 9) X 86

14 (2,. . . ,2) (3,3,3,3,1,1) (10,2,2) S(3, 3, 5, 5) 99KS(2, 3, 10) X 87

(2,. . . ,2) (3,3,3,3,1,1) (8,4,2) S(2, 3, 3, 4) 99KS(2, 3, 8) X 88

(2,. . . ,2) (3,3,3,3,1,1) (12,1,1) S(3, 3, 12, 12) 99KS(2, 3, 12) X 89

(2,. . . ,2) (4,4,4,1,1) (6,6,1,1) S(4, 4, 6, 6) 99KS(2, 4, 6) X 90

(2,. . . ,2,1,1) (3,3,3,3,1,1) (7,7) S(2, 2, 3, 3) 99KS(2, 3, 7) X 91

15 (2,. . . ,2,1) (3,3,3,3,3) (12,1,1,1) S(2, 12, 12, 12) 99KS(2, 3, 12) X 92

(2,. . . ,2,1) (3,3,3,3,3) (8,4,2,1) S(2, 2, 4, 8) 99KS(2, 3, 8) X 93

(2,. . . ,2,1) (3,3,3,3,3) (10,2,2,1) S(2, 5, 5, 10) 99KS(2, 3, 10) X 94

(2,. . . ,2,1) (4,4,4,1,1,1) (5,5,5) S(2, 4, 4, 4) 99KS(2, 4, 5) X 95

(2,. . . ,2,1,1,1) (3,3,3,3,3) (7,7,1) S(2, 2, 2, 7) 99KS(2, 3, 7) X 96

16 (2,. . . ,2) (3,3,3,3,3,1) (10,2,2,2) S(3, 5, 5, 5) 99KS(2, 3, 10) Excep 97

(2,. . . ,2) (3,3,3,3,3,1) (8,4,2,2) S(2, 3, 4, 4) 99KS(2, 3, 8) Excep 98

(2,. . . ,2) (3,3,3,3,1,1,1,1) (8,8) S(3, 3, 3, 3) 99KS(2, 3, 8) X 99

(2,. . . ,2) (3,3,3,3,3,1) (13,1,1,1) S(3, 13, 13, 13) 99KS(2, 3, 13) X 100

(2,. . . ,2) (3,3,3,3,3,1) (12,2,1,1) S(3, 6, 12, 12) 99KS(2, 3, 12) X 101

(2,. . . ,2) (3,3,3,3,3,1) (9,3,3,1) S(3, 3, 3, 9) 99KS(2, 3, 9) X 102

(2,. . . ,2) (4,4,4,4) (6,6,1,1,1,1) S(6, 6, 6, 6) 99KS(2, 4, 6) X 103

(2,. . . ,2) (4,4,4,2,1,1) (5,5,5,1) S(2, 4, 4, 5) 99KS(2, 4, 5) X 104

17 (2,. . . ,2,1) (3,3,3,3,3,1,1) (8,8,1) S(2, 3, 3, 8) 99KS(2, 3, 8) X 105

(2,. . . ,2,1) (4,4,4,4,1) (5,5,5,1,1) S(2, 4, 5, 5) 99KS(2, 4, 5) X 106

18 (2,. . . ,2,1,1) (3,. . . ,3) (8,8,1,1) S(2, 2, 8, 8) 99KS(2, 3, 8) X 107

(2,. . . ,2) (3,3,3,3,3,1,1,1) (8,8,2) S(3, 3, 3, 4) 99KS(2, 3, 8) X 108

(2,. . . ,2) (3,. . . ,3) (14,1,1,1,1) S(14, 14, 14, 14) 99KS(2, 3, 14) X 109

(2,. . . ,2) (3,. . . ,3) (12,2,2,1,1) S(6, 6, 12, 12) 99KS(2, 3, 12) X 110

(2,. . . ,2) (3,. . . ,3) (12,3,1,1,1) S(4, 12, 12, 12) 99KS(2, 3, 12) X 111

(2,. . . ,2) (3,. . . ,3) (10,5,1,1,1) S(2, 10, 10, 10) 99KS(2, 3, 10) X 112

(2,. . . ,2) (3,. . . ,3) (8,4,4,1,1) S(2, 2, 8, 8) 99KS(2, 3, 8) Excep 113

(2,. . . ,2) (3,. . . ,3) (8,4,2,2,2) S(2, 4, 4, 4) 99KS(2, 3, 8) Excep 114

(2,. . . ,2) (3,. . . ,3) (10,2,2,2,2) S(5, 5, 5, 5) 99KS(2, 3, 10) Excep 115

(2,. . . ,2) (4,4,4,4,2) (5,5,5,1,1,1) S(2, 5, 5, 5) 99KS(2, 4, 5) Excep 116

Table 4. Continued from Table 3.
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d Π1 Π2 Π3 Associated X̃ 99KX Realizable? #

19 (2,. . . ,2,1) (3,. . . ,3,1) (8,8,2,1) S(2, 3, 4, 8) 99KS(2, 3, 8) X 117

20 (2,. . . ,2) (3,. . . ,3,1,1) (8,8,2,2) S(3, 3, 4, 4) 99KS(2, 3, 8) X 118

(2,. . . ,2) (3,. . . ,3,1,1) (9,9,1,1) S(3, 3, 9, 9) 99KS(2, 3, 9) X 119

(2,. . . ,2) (4,4,4,4,1,1,1,1) (5,5,5,5) S(4, 4, 4, 4) 99KS(2, 4, 5) X 120

21 (2,. . . ,2,1) (3,. . . ,3) (9,9,1,1,1) S(2, 9, 9, 9) 99KS(2, 3, 9) X 121

(2,. . . ,2,1) (3,. . . ,3) (8,8,2,2,1) S(2, 4, 4, 8) 99KS(2, 3, 8) Excep 122

(2,. . . ,2,1) (3,. . . ,3,1,1,1) (7,7,7) S(2, 3, 3, 3) 99KS(2, 3, 7) X 123

22 (2,. . . ,2,1,1) (3,. . . ,3,1) (7,7,7,1) S(2, 2, 3, 7) 99KS(2, 3, 7) X 124

(2,. . . ,2) (3,. . . ,3,1) (8,8,4,1,1) S(2, 3, 8, 8) 99KS(2, 3, 8) Excep 125

(2,. . . ,2) (3,. . . ,3,1) (8,8,2,2,2) S(3, 4, 4, 4) 99KS(2, 3, 8) Excep 126

(2,. . . ,2) (4,4,4,4,4,1,1) (5,5,5,5,1,1) S(4, 4, 5, 5) 99KS(2, 4, 5) X 127

24 (2,. . . ,2) (3,. . . ,3) (8,8,2,2,2,2) S(4, 4, 4, 4) 99KS(2, 3, 8) X 128

(2,. . . ,2) (3,. . . ,3) (8,8,4,2,1,1) S(2, 4, 8, 8) 99KS(2, 3, 8) X 129

(2,. . . ,2) (3,. . . ,3) (10,10,1,1,1,1) S(10, 10, 10, 10) 99KS(2, 3, 10) X 130

(2,. . . ,2) (3,. . . ,3) (9,9,3,1,1,1) S(3, 9, 9, 9) 99KS(2, 3, 9) Excep 131

(2,. . . ,2) (4,. . . ,4) (5,5,5,5,1,1,1,1) S(5, 5, 5, 5) 99KS(2, 4, 5) X 132

26 (2,. . . ,2) (3,. . . ,3,1,1) (8,8,8,1,1) S(3, 3, 8, 8) 99KS(2, 3, 8) X 133

27 (2,. . . ,2,1) (3,. . . ,3) (8,8,8,1,1,1) S(2, 8, 8, 8) 99KS(2, 3, 8) X 134

28 (2,. . . ,2) (3,. . . ,3,1) (8,8,8,2,1,1) S(3, 4, 8, 8) 99KS(2, 3, 8) X 135

(2,. . . ,2) (3,. . . ,3,1,1,1,1) (7,7,7,7) S(3, 3, 3, 3) 99KS(2, 3, 7) X 136

29 (2,. . . ,2,1) (3,. . . ,3,1,1) (7,7,7,7,1) S(2, 3, 3, 7) 99KS(2, 3, 7) X 137

30 (2,. . . ,2,1,1) (3,. . . ,3) (7,7,7,7,1,1) S(2, 2, 7, 7) 99KS(2, 3, 7) X 138

(2,. . . ,2) (3,. . . ,3) (8,8,8,2,2,1,1) S(4, 4, 8, 8) 99KS(2, 3, 8) X 139

36 (2,. . . ,2) (3,. . . ,3) (8,8,8,8,1,1,1,1) S(8, 8, 8, 8) 99KS(2, 3, 8) X 140

(2,. . . ,2) (3,. . . ,3,1,1,1) (7,7,7,7,7,1) S(3, 3, 3, 7) 99KS(2, 3, 7) X 141

37 (2,. . . ,2,1) (3,. . . ,3,1) (7,7,7,7,7,1,1) S(2, 3, 7, 7) 99KS(2, 3, 7) X 142

44 (2,. . . ,2) (3,. . . ,3,1,1) (7,. . . ,7,1,1) S(3, 3, 7, 7) 99KS(2, 3, 7) X 143

45 (2,. . . ,2,1) (3,. . . ,3) (7,. . . ,7,1,1,1) S(2, 7, 7, 7) 99KS(2, 3, 7) X 144

52 (2,. . . ,2) (3,. . . ,3,1) (7,. . . ,7,1,1,1) S(3, 7, 7, 7) 99KS(2, 3, 7) X 145

60 (2,. . . ,2) (3,. . . ,3) (7,. . . ,7,1,1,1,1) S(7, 7, 7, 7) 99KS(2, 3, 7) X 146

Table 5. Continued from Table 4.
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d Π1 Π2 Π3 Associated X̃ 99KX Realizable? #

4 (3,1) (4) (4) T (3) 99KS(3, 4, 4) X 147

5 (2,2,1) (5) (5) T (2) 99KS(2, 5, 5) X 148

6 (2,2,2) (5,1) (6) T (5) 99KS(2, 5, 6) X 149

(2,2,2) (4,2) (6) T (2) 99KS(2, 4, 6) X 150

(3,3) (3,3) (5,1) T (5) 99KS(3, 3, 5) X 151

(3,3) (3,3) (4,2) T (2) 99KS(3, 3, 4) Excep 152

8 (2,2,2,2) (4,4) (7,1) T (7) 99KS(2, 4, 7) X 153

(2,2,2,2) (4,4) (6,2) T (3) 99KS(2, 4, 6) X 154

9 (2,2,2,2,1) (3,3,3) (9) T (2) 99KS(2, 3, 9) X 155

(3,3,3) (3,3,3) (4,4,1) T (4) 99KS(3, 3, 4) X 156

10 (2,2,2,2,2) (4,4,2) (5,5) T (2) 99KS(2, 4, 5) X 157

(2,2,2,2,2) (3,3,3,1) (10) T (3) 99KS(2, 3, 10) X 158

12 (2,. . . ,2) (3,3,3,3) (11,1) T (11) 99KS(2, 3, 11) X 159

(2,. . . ,2) (3,3,3,3) (10,2) T (5) 99KS(2, 3, 10) X 160

(2,. . . ,2) (3,3,3,3) (9,3) T (3) 99KS(2, 3, 9) X 161

(2,. . . ,2) (3,3,3,3) (8,4) T (2) 99KS(2, 3, 8) X 162

16 (2,. . . ,2) (3,3,3,3,3,1) (8,8) T (3) 99KS(2, 3, 8) Excep 163

(2,. . . ,2) (4,4,4,4) (5,5,5,1) T (5) 99KS(2, 4, 5) Excep 164

18 (2,. . . ,2) (3,. . . ,3) (8,8,2) T (4) 99KS(2, 3, 8) X 165

21 (2,. . . ,2,1) (3,. . . ,3) (7,7,7) T (2) 99KS(2, 3, 7) Excep 166

28 (2,. . . ,2) (3,. . . ,3,1) (7,7,7,7) T (3) 99KS(2, 3, 7) X 167

36 (2,. . . ,2) (3,. . . ,3) (7,7,7,7,7,1) T (7) 99KS(2, 3, 7) Excep 168

Table 6. Candidates T
d:1

99K99K
(Π1,Π2,Π3)

S with associated hyperbolic T (α) 99KS(p, q, r).
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4 Enumeration of relevant candidate covers

In this section we establish the following two results:

Theorem 4.1. The candidate surface branched covers with associated hyper-
bolic orbifold candidate S(α, β, γ, δ) 99KS(p, q, r) are precisely the 146 items
listed in Tables 1 to 5.

Theorem 4.2. The candidate surface branched covers with associated hyper-
bolic orbifold candidate T (α) 99KS(p, q, r) are precisely the 22 items listed in
Table 6.

Proof of 4.1. Given a degree d and three partitions Π1,Π2,Π3 of d we recall
that ℓ(Πi) denotes the length of Πi, and we note that the Riemann-Hurwitz
formula (1) reads

ℓ(Π1) + ℓ(Π2) + ℓ(Π3) = d+ 2 (3)

in this case, because Σ̃ = Σ is the sphere S. In addition we define c(Πi) as
the number of entries in Πi which are different from l.c.m.(Πi). We must
then find those d and Π1,Π2,Π3 satisfying (3), the relation

c(Π1) + c(Π2) + c(Π3) = 4 (4)

and such that for the associated candidate X̃ 99KX one has that X (or,

equivalently, X̃) is hyperbolic. We begin with the following:

Proposition 4.3. The relevant degrees d and partitions Π1,Π2,Π3 with d 6

12 are the 82 items listed in Tables 1 to 3.

Proof. For each d between 2 and 12 we must:

(a) List all the partitions Π of d such that c(Π) 6 4, excluding (1, . . . , 1);

(b) Select an unordered triple Π1,Π2,Π3 meeting conditions (3) and (4);

(c) Discard the triples such that the sum of reciprocals of l.c.m.(Πi) for
i = 1, 2, 3 is greater than or equal to 1.

Note that excluding (1, . . . , 1) in (a) guarantees that in the orbifold cover

X̃ → X associated to S
d:1

99K99K99K
(Π1,Π2,Π3)

S one has X = S(p, q, r). Then (c) reads

1
p
+ 1

q
+ 1

r
< 1 and means that X is hyperbolic.
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Π (10) (9,1) (8,2) (7,3) (6,4) (5,5)

ℓ 1 2 2 2 2 2

c 0 1 1 2 2 0

Π (8,1,1) (7,2,1) (6,3,1) (6,2,2) (5,4,1) (5,3,2)

ℓ 3 3 3 3 3 3

c 2 3 2 2 3 3

Π (4,4,2) (4,3,3) (7,1,1,1) (6,2,1,1) (5,3,1,1) (5,2,2,1)

ℓ 3 3 4 4 4 4

c 1 3 3 3 4 4

Π (4,4,1,1) (4,3,2,1) (4,2,2,2) (3,3,3,1) (3,3,2,2) (6,1,1,1,1)

ℓ 4 4 4 4 4 5

c 2 4 3 1 4 4

Π (4,2,2,1,1) (2,. . . ,2) (3,3,1,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1)

ℓ 5 5 6 6 7

c 4 0 4 2 4

Table 7. The partitions Π of d = 10 with c(Π) 6 4

c 0 1 2 3 4
ℓ 1 2 5 2 3 4 2 3 4 6 3 4 4 5 6 7

# 1 1 1 2 1 1 2 3 1 1 4 3 4 2 1 1

Table 8. Values of (c, ℓ) for the partitions Π of d = 10 with c(Π) 6 4, and numbers of
Π’s giving each (c, ℓ).

Achieving tasks (a), (b), and (c) is a matter that only requires a little
time and care, and that can also safely be carried out by computer. As an
only example, we make the argument explicit for d = 10, addressing the
reader to [19] for the other cases. We first show in Table 7 the 28 partitions
Π of d = 10 with c(Π) 6 4.

Analyzing these partitions we see that the possible values of the pairs
(c, ℓ) and the numbers of partitions giving each of them are those in Table 8.

To achieve task (b) we must now select all possible unordered triples of
partitions such that the corresponding (c, ℓ)’s sum up to (4, 12), which can
be done in the ways described in Table 10. The table also contains the type
geometry of X and X̃ in the corresponding candidate orbifold cover. Task
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(c1, ℓ1) (c2, ℓ2) (c3, ℓ3) #

(0,5) (0,2) (4,5) 2
(0,5) (0,1) (4,6) 1
(0,5) (1,4) (3,3) 4
(0,5) (1,3) (3,4) 3
(0,5) (2,4) (2,3) 3
(0,2) (2,4) (2,6) 1
(1,4) (1,4) (2,4) 1
(1,2) (1,4) (2,6) 2
(1,3) (1,3) (2,6) 1

Table 9. Triples (c, ℓ) summing up to (4, 12), and numbers of different choices for the
corresponding partitions.

Π1 Π2 Π3 Associated cover Geometry

(2,2,2,2,2) (5,5) (6,1,1,1,1) S(6, 6, 6, 6) 99KS(2, 5, 6) H

(2,2,2,2,2) (5,5) (4,2,2,1,1) S(2, 2, 4, 4) 99KS(2, 4, 5) H

(2,2,2,2,2) (10) (3,3,1,1,1,1) S(3, 3, 3, 3) 99KS(2, 3, 10) H

(2,2,2,2,2) (3,3,3,1) (7,2,1) S(2, 3, 7, 14) 99KS(2, 3, 14) H

(2,2,2,2,2) (3,3,3,1) (5,4,1) S(3, 4, 5, 20) 99KS(2, 3, 20) H

(2,2,2,2,2) (3,3,3,1) (5,3,2) S(3, 6, 10, 15) 99KS(2, 3, 30) H

(2,2,2,2,2) (3,3,3,1) (4,3,3) S(3, 3, 4, 4) 99KS(2, 3, 12) H

(2,2,2,2,2) (4,4,2) (7,1,1,1) S(2, 7, 7, 7) 99KS(2, 4, 7) H

(2,2,2,2,2) (4,4,2) (6,2,1,1) S(2, 3, 6, 6) 99KS(2, 4, 6) H

(2,2,2,2,2) (4,4,2) (4,2,2,2) S(2, 2, 2, 2) 99KS(2, 4, 4) E

(2,2,2,2,2) (4,4,1,1) (8,1,1) S(4, 4, 8, 8) 99KS(2, 4, 8) H

(2,2,2,2,2) (4,4,1,1) (6,3,1) S(2, 4, 4, 6) 99KS(2, 4, 6) H

(2,2,2,2,2) (4,4,1,1) (6,2,2) S(3, 3, 4, 4) 99KS(2, 4, 6) H

(5,5) (4,4,1,1) (2,2,2,2,1,1) S(2, 2, 4, 4) 99KS(2, 4, 5) H

(3,3,3,1) (3,3,3,1) (4,4,1,1) S(3, 3, 4, 4) 99KS(3, 3, 4) H

(8,2) (3,3,3,1) (2,2,2,2,1,1) S(2, 2, 3, 4) 99KS(2, 3, 8) H

(9,1) (3,3,3,1) (2,2,2,2,1,1) S(2, 2, 3, 9) 99KS(2, 3, 9) H

(4,4,2) (4,4,2) (2,2,2,2,1,1) S(2, 2, 2, 2) 99KS(2, 4, 4) E

Table 10. Partitions of d = 10 giving rise to candidate orbifold covers of the form
S(α, β, γ, δ) 99KS(p, q, r) and the corresponding geometries.
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(c) corresponds to discarding non-H geometries, after which we get the 16
items with numbers 43 through 58 in Tables 2 and 3.

We now turn to the following:

Proposition 4.4. The degrees d and partitions Π1,Π2,Π3 relevant to Theo-
rem 4.1 with d > 13 are the 64 items listed in Tables 4 and 5.

Proof. In this case we proceed in reverse order, from X̃ 99KX to d and the
partitions. Namely we first analyze which hyperbolic candidate orbifold cov-

ers X̃
d:1
99KX exist with d > 13, and in the course of this analysis we determine

for what choices of d and Π1,Π2,Π3 these candidates can arise.

Let us then consider a hyperbolic candidate X̃
d:1
99KX with d > 13, X̃ =

S(α, β, γ, δ) and X = S(p, q, r). Let us always assume that α 6 β 6 γ 6 δ

and p 6 q 6 r. Since 0 < −χorb(X̃) = 2 −
(

1
α
+ 1

β
+ 1

γ
+ 1

δ

)
< 2 and

χorb(X̃) = d·χorb(X), we deduce that

0 < −χorb(X) = 1−
(

1
p
+ 1

q
+ 1

r

)
< 2

13
⇒ 11

13
< 1

p
+ 1

q
+ 1

r
< 1.

Assuming p 6 q 6 r it is now very easy to check that the last inequality is
satisfied only for (p, q, r) as follows:

(A) (2, 3, r) with 7 6 r 6 77;

(B) (2, 4, r) with 5 6 r 6 10;

(C) (2, 5, 5), (2, 5, 6), (3, 3, 4) or (3, 3, 5).

We now remark that:

(I) Each of α, β, γ, δ must be a divisor of one of p, q, r;

(II) d = χorb(X̃)
χorb(X)

must be an integer.

Let us now establish the following auxiliary result:

Lemma 4.5. Let S(α, β, γ, δ)
d:1
99KS(p, q, r) be a hyperbolic candidate orbifold

cover. Set dmax(p, q, r) =
2− 4

r

1− 1
p
− 1

q
− 1

r

. Then d 6 dmax(p, q, r).
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X̃ S(6, 6, 6, 6) S(4, 6, 6, 6) S(3, 6, 6, 6) S(4, 4, 6, 6) S(3, 4, 6, 6) S(4, 4, 4, 6)

d 16 15 14 14 13 13

Table 11. The relevant X̃ for X = S(2, 4, 6) and the corresponding d = χorb(X̃)
χorb(X)

.

Proof. By (I) and the condition p 6 q 6 r we have α, β, γ, δ 6 r, whence
−χorb(S(α, β, γ, δ)) = 2− 1

α
− 1

β
− 1

γ
− 1

δ
6 2− 4

r
and the conclusion follows

from (2), because −χorb(S(p, q, r)) = 1− 1
p
− 1

q
− 1

r
.

Getting back to the cases (A), (B), and (C) that we must consider, we
start from the last one and note that

dmax(2, 5, 5) = 12, dmax(2, 5, 6) = 10, dmax(3, 3, 4) = 12, dmax(3, 3, 5) = 9.

Since the assumption d > 13 is in force, we conclude that case (C) does not
yield relevant candidates. Turning to case (B), we have

dmax(2, 4, 5) = 24, dmax(2, 4, 6) = 16, dmax(2, 4, 7) = 13.3,
dmax(2, 4, 8) = 12, dmax(2, 4, 9) = 11.2, dmax(2, 4, 10) = 10.6.

Therefore, the cases r = 8, r = 9 and r = 10 do not yield relevant can-
didates. The case r = 7, namely X = S(2, 4, 7), also does not, because

for X̃ = S(7, 7, 7, 7) we have that χorb(X̃)
χorb(X)

= 13.3, which violates (II), and

for the next biggest possible −χorb(X̃) in view of (I), corresponding to

X̃ = S(4, 7, 7, 7), we have χorb(X̃)
χorb(X)

= 12.3, which again violates (II). Let now

analyze the case X = S(2, 4, 6). Picking α, β, γ, δ ∈ {2, 3, 4, 6}, as imposed

by (I), and discarding the cases where χorb(X̃)
χorb(X)

6 12, we find the possible X̃ ’s

of Table 11. To conclude with the case X = S(2, 4, 6) we must now discuss

for which X̃ as in Table 11 there actually exist partitions of d inducing a
candidate X̃ → X . We do this in full detail to give the reader a taste of the
arguments one can use to this end. In similar cases below we will omit all
details, addressing to [19].

Proposition 4.6. The only candidate covers with X = S(2, 4, 6) and X̃ as
in Table 11 are those described in items 90 and 103 in Table 4.

Proof. For X̃ = S(6, 6, 6, 6) the partition of d = 16 corresponding to the cone
point of order 6 in X must include four 1’s, which already give all four cone
points of X̃, so the partition must be (6, 6, 1, 1, 1, 1) and the other two must be
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If . . . r = 7 r = 8 r = 9 r = 10 r = 11
then d 6 60 36 28 24 21

If . . . r = 12 13 6 r 6 14 r = 15 16 6 r 6 18 19 6 r 6 22
then d 6 20 18 17 16 15

If . . . 23 6 r 6 30 31 6 r 6 54 r > 55
then d 6 14 13 12

Table 12. Upper bounds on d depending on the values of r.

(2, . . . , 2) and (4, 4, 4, 4), whence item 103 in Table 4. For X̃ = S(4, 6, 6, 6),

X̃ = S(3, 4, 6, 6) and X̃ = S(4, 4, 4, 6) the fact that X̃ has no cone point of
order 2 implies that the partition of d corresponding to the cone point of order
2 in X consists of 2’s only, which is impossible because d is odd. A similar
argument shows that X̃ = S(3, 6, 6, 6) does not give a candidate cover: since

X̃ has no cone point of order 2 or 4, the partition corresponding to the cone
point of order 4 in X must consist of 4’s only, which is impossible because
d = 14 is not a multiple of 4. Finally, let us consider X̃ = S(4, 4, 6, 6); these
cone orders tell us that in both partitions corresponding to the cone points
of orders 4 and 6 in X there must be two 1’s, but then the only possibility
is (2, . . . , 2), (4, 4, 4, 1, 1) and (6, 6, 1, 1), which gives item 90 in Table 4.

To conclude case (B) we must deal with X = S(2, 4, 5). This is done in
very much the same way as for X = S(2, 4, 6) and leads to items 95, 104,
106, 116, 120, 127, and 132 in Tables 4 and 5, see [19].

Finally, we examine case (A), where X = S(2, 3, r) and 7 6 r 6 77.
We first note that for the function dmax introduced in Lemma 4.5 we have
dmax(2, 3, r) = 12 · r−2

r−6
. Imposing d 6 ⌊dmax(2, 3, r)⌋ we then easily get:

Lemma 4.7. Let S(α, β, γ, δ)
d:1
99KS(2, 3, r) be a candidate orbifold cover.

Then, depending on the value of r, the degree d satisfies the upper bound
described in Table 12.

Since our aim is to list the relevant candidate covers with d > 13 we see
in particular that we can restrict to 7 6 r 6 54. This leaves however several
cases to consider, to reduce which we establish the following:
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If d ≡ . . . (mod 6) 0 1 2 3 4 5
then r 6 54 11 13 15 20 13

Table 13. Upper bounds on r depending on the congruence class of d modulo 6.

Lemma 4.8. Let S(α, β, γ, δ)
d:1
99KS(2, 3, r) be a candidate orbifold cover. Set

d
≡1 (2)
max (r) = 9 · r−2

r−6
, d

≡1 (3)
max (r) = 2 · 5r−9

r−6
,

d
≡2 (3)
max (r) = 4 · 2r−3

r−6
, d

≡1 (6)
max (r) = 7r−12

r−6
.

If d ≡ k (mod n) then d 6 d
≡k (n)
max (r).

Proof. If d ≡ 1 (mod 2) then the partition of d corresponding to the cone
point of order 2 in S(2, 3, r) must have at least one entry equal to 1, so α = 2,

whence −χorb(S(α, β, γ, δ)) 6 2− 1
2
− 3

r
; therefore, d 6

2− 1
2
− 3

r

1− 1
2
− 1

3
− 1

r

= d
≡1 (2)
max (r).

The other cases are treated in a similar way.

Lemma 4.9. Let S(α, β, γ, δ)
d:1
99KS(2, 3, r) be a candidate orbifold cover with

d > 13. Then, depending on the congruence class of d modulo 6, the cone
order r satisfies the upper bounds described in Table 13.

Proof. The conclusion is obtained by direct computation after imposing the
appropriate d

≡k (n)
max (r) > 13.

Combining the restrictions given by Lemmas 4.7, 4.8 and 4.9 we can now
conclude our analysis of case (A).

Proposition 4.10. No candidate orbifold cover S(α, β, γ, δ)
d:1
99KS(2, 3, r) ex-

ists with d > 13 and r > 15.

Proof. Suppose first that r > 19. Then Lemma 4.7 implies that d 6 15, so
d can attain the values 13, 14 and 15, and Lemma 4.9 implies that r 6 15,
a contradiction. For 15 6 r 6 18 Lemma 4.7 implies that d 6 17, and
then Lemma 4.9 shows that either d = 16 or d = r = 15. For d = 16
we then get a contradiction invoking Lemma 4.8 because d

≡1 (3)
max (r) < 16 for

15 6 r 6 18. Similarly for d = r = 15 we get a contradiction because
d
≡1 (2)
max (15) = 13 < 15.
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Proposition 4.11. The only candidates S(α, β, γ, δ)
d:1
99KS(2, 3, r) with d >

13 and 13 6 r 6 14 are items 100 and 109 in Table 4.

Proof. Start with r = 14. Lemma 4.7 implies that d 6 18, whence Lemma 4.9
implies that d can attain the values 15, 16 and 18. For d = 15 we have
d 6 d

≡1 (2)
max (14) = 13.5 and for d = 16 we have d 6 d

≡1 (3)
max (14) = 15.25,

whence a contradiction in both cases. For d = 18 we note that the only
partitions Π of d = 18 consisting of divisors of 14 and such that c(Π) 6 4 are

(7, 7, 2, 2), (14, 2, 2), (14, 2, 1, 1), (14, 1, 1, 1, 1).

For (7, 7, 2, 2) and (14, 1, 1, 1, 1) we have c(Π) = 4, so the other two partitions
of d = 18 must be (2, . . . , 2) and (3, . . . , 3), but the total length is d+2 = 20
only for (14, 1, 1, 1, 1), which gives 109. For (14, 2, 2) we have c(Π) = 2, so
the two other partitions must be (2, . . . , 2, 1, 1) and (3, . . . , 3), but then the
total length is 19. For (14, 2, 1, 1) we have c(Π) = 3 and no choice is possible
for the two other partitions.

For r = 13 again we have d 6 18, and using as above the values of
d
≡k (n)
max (13) we see that d = 14, d = 15 and d = 17 are impossible. For

d = 16 the only partition Π of d consisting of divisors of 13 with c(Π) 6 4 is
(13, 1, 1, 1), which implies that the two other partitions must be (2, . . . , 2) and
(3, . . . , 3, 1), whence 100. For d = 18 there is no partition Π of d consisting
of divisors of 13 with c(Π) 6 4.

The rest of the discussion leading to the proof of Proposition 4.4 is now
quite similar to the arguments already used. For a decreasing value of r
between 12 and 7 one has an increasingly complicated argument consisting
of:

• A use of Lemmas 4.7 to 4.9, to exclude some values of d;

• The analysis of what partitions Π1,Π2,Π3 of 2, 3, r satisfy l.c.m.(Π1) =
2, l.c.m.(Π2) = 3, l.c.m.(Π3) = r, c(Π1) + c(Π2) + c(Π3) = 4 and
ℓ(Π1) + ℓ(Π2) + ℓ(Π3) = d + 2; this last discussion is easier for r = 7
and r = 11, since Π3 can only consist of r’s and 1’s.

We address the reader to [19] for a careful description of this argument,
only mentioning that for 7 6 r 6 12 one gets exactly the 53 items in Tables 4
and 5 excluding the 9 coming from case (B) and the 2 already found in
case (A). More precisely for r = 7, 8, 9, 10, 11, 12 one gets respectively
13, 22, 5, 7, 1, 5 candidates, for a total of 53.
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Combining Propositions 4.3 and 4.4 we obtain the conclusion of the proof
of Theorem 4.1. �

Proof of 4.2. We use the same notation as above. Since Σ̃ is now the torus
T and Σ is the sphere S, the Riemann-Hurwitz formula (1) reads

ℓ(Π1) + ℓ(Π2) + ℓ(Π3) = d. (5)

Therefore, we need to enumerate the degrees d, and the partitions Π1,Π2,Π3

satisfying (5) and
c(Π1) + c(Π2) + c(Π3) = 1, (6)

because in this case in the associated candidate orbifold cover X̃ 99KX we
automatically have that X̃ = T (α) with α > 1 is hyperbolic, so is X .

Relations (5) and (6) imply that for any given d we must find divisors
p > 1 and q > 1 of d, an integer r > 1 and a divisor r′ 6= r of r such that
d− r′ is a multiple of r and d

p
+ d

q
+ d−r′

r
+1 = d. This is very easily done for

d 6 17 and leads to the first 18 items in Table 6. (We note in passing that in
Table 6 the partitions Π1,Π2,Π3 defining a candidate cover are rearranged for
increasing l.c.m.) As an only example, we present the argument for d = 12,
addressing the reader to [19] for the other degrees up to 17.

So, for d = 12, we note that the pairs (r, r′) with r′ 6= r a divisor of r and
12− r′ a multiple of r are the following ones:

(8, 4), (9, 3), (10, 2), (11, 1).

For each of them we have 12−r′

r
= 1, so we must now find two divisors p and

q of 12 such that 12
p
+ 12

q
= 10, and one readily sees that up to permutation

the only choice is p = 2 and q = 3. We conclude that for d = 12 there are 4
relevant candidate covers, listed as items 159 to 162 in Table 6.

Turning to the case d > 18, consider a candidate orbifold cover X̃
d:1
99KX

with hyperbolic X̃ = T (α) andX = S(p, q, r). Since 0 < −χorb(X̃) = 1− 1
α
<

1 and χorb(X̃) = d·χorb(X), we readily deduce that 17
18

< 1
p
+ 1

q
+ 1

r
< 1, which

implies that either p = 2, q = 4 and r = 5 or p = 2, q = 3 and 7 6 r 6 8.
For p = 2, q = 4 and r = 5 one must have α ∈ {2, 4, 5} and correspondingly
d ∈ {10, 15, 16}, which contradicts d ≥ 18. For p = 2, q = 3 and r = 7 the
partitions of d giving rise to the candidate must have one of the following
forms:
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(2, . . . , 2, 1), (3, . . . , 3), (7, . . . , 7),
(2, . . . , 2), (3, . . . , 3, 1), (7, . . . , 7),
(2, . . . , 2), (3, . . . , 3), (7, . . . , 7, 1).

Correspondingly, (5) translates into

d−1
2

+ 1 + d
3
+ d

7
= d ⇒ d = 21

d
2
+ d−1

3
+ 1 + d

7
= d ⇒ d = 28

d
2
+ d

3
+ d−1

7
+ 1 = d ⇒ d = 36

and we get the candidates 166 to 168 in Table 6. For r = 8 one carries out a
similar analysis, this time with five different triples of partitions (because 8
has three divisors smaller than itself, while 2 and 3 have one), and one finds
as the only new candidate item 165 in Table 6. Note that for the partitions
(2, . . . , 2), (3, . . . , 3), (8, . . . , 8, 1), imposing d

2
+ d

3
+ d−1

8
+ 1 = d, one finds

d = 21, but this does not give a candidate, since d
2
and d−1

8
are not integers.

See the details in [19]. �

5 Overview of the techniques used to prove

realizability and exceptionality

In this section we briefly present the methods using which we have proved
realizability or exceptionality for each of the 168 candidate covers in Theo-
rems 3.1 and 3.2.

Dessins d’enfant (DE) This is a classical technique, introduced by Gro-
thendieck in [7] for studying algebraic maps between Riemann surfaces, which
proves a powerful tool both to exhibit realizability and to show exceptionality
of candidate covers. We introduce Grothendieck’s dessins in their original
form, that is valid only for covers of the sphere with three branching points,
but we mention that the method was generalized in [20] to the case of more
branching points.

To begin recall that a bipartite graph is a finite 1-complex whose vertex
set is split as V1 ⊔ V2 and each edge has one endpoint in V1 and one in V2.
We now give the following:

Definition 5.1. A dessins d’enfant on a surface Σ̃ is a bipartite graph D ⊂
Σ̃ such that Σ̃\D consists of open discs. The length of one of these discs
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is the number of edges of D along which its boundary passes, counted with
multiplicity.

The connection between dessins d’enfant and branched covers comes from
the next result (see [20] for a proof):

Proposition 5.2. The realizations of a candidate Σ̃
d:1

99K99K99K99K99K99K
(d11,...,d1m1

),...,(d31,...,d3m3
)
S

correspond to the dessins d’enfant D ⊂ Σ̃ with set of vertices V1 ⊔ V2 such
that for i = 1, 2 the vertices in Vi have valences (dij)

mi

j=1, and the discs in

Σ̃\D have lengths (2d3j)
m3

j=1.

Graph moves (GM) This method will be used below only to prove excep-
tionality. Its description here is rather generic, and in a sense obvious, but
in several practical cases we can indeed make the method work.

Proposition 5.3. Let c and c′ be partial dessins d’enfant. Let S
d:1
99K

Π
S be a

candidate surface branched cover. Suppose that:

(1) While trying to construct a dessin d’enfant realizing S
d:1
99K

Π
S one is

forced to insert a portion c;

(2) Any completion of c to a dessin d’enfant realizing S
d:1
99K

Π
S, if any, could

also be used to complete c′ and would give a to a dessin d’enfant realizing

another candidate S
d′:1
99K
Π′

S.

If S
d′:1
99K
Π′

S is exceptional then S
d:1
99K

Π
S also is.

The key point of this result is that one can establish condition (2) by

examining c, c′ and S
d:1
99K

Π
S only, without searching the completions of c

realizing S
d:1
99K

Π
S. We also mention here the remarkable fact that in Propo-

sition 6.3 we will apply the GM method with c′ more complicated than c,
namely with d′ greater than d.
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Very even data (VED) and block decompositions (BD) If d = d′+d′′,
we will say that a partition Π of d refines the partition (d′, d′′) if Π splits as
Π′ ⊔ Π′′ with Π′ a partition of d′ and Π′′ a partition of d′′. The next result
established in [20] will be used to show exceptionality of several candidates:

Proposition 5.4. Consider a candidate surface cover Σ̃
d:1

99K99K99K
Π1,Π2,Π3

Σ with d

and each element of Πi for i = 1, 2 being even. If the candidate is realizable
then Π3 must refine the partition (d/2, d/2).

The next result was also shown in [20] and it is based on the same idea
that under certain divisibility assumptions a surface branched cover can be
expressed as the composition of two other ones:

Proposition 5.5. Consider a candidate surface cover Σ̃
d:1

99K99K99K
Π1,Π2,Π3

Σ with d

and each entry of Πi for i = 1, 2 being divisible by some k. If the candidate
is realizable then each entry of Π3 is less than or equal to d/k.

We mention that some more specific realizability criteria were provided
in [20] for even d and Π1 = (2, . . . , 2) and either Π2 = (5, 3, 2, . . . , 2, 1), or
Π2 = (3, 3, 2, . . . , 2) or Π2 = (3, 2, . . . , 2, 1). In an earlier version of [20]
the technique leading to Propositions 5.4 and 5.5 was also generalized to a
certain theory of block decompositions, which allows in particular to prove
exceptionality of several candidate surface covers in degree 12. Since these
candidates can be alternatively and quite easily discussed using DE, we will
refrain from restating these specific results here.

Geometric gluings (GG) The main idea of [18] was to use the geome-
try of 2-orbifolds to analyze candidate surface covers. But this was actually
done only in the spherical and Euclidean case, while for the 11 hyperbolic
candidates corresponding to orbifold covers between triangular orbifolds the
technique of DE was only used. In this paper for the first time we actu-
ally apply the geometry of hyperbolic orbifolds to discuss realizability of
candidate surface branched covers. The statement we give here, just like
Proposition 5.3, is a rather straight-forward one, but we can actually employ
it in several concrete examples, to show both realizability and exceptionality:

Proposition 5.6. Consider a candidate surface branched cover Σ̃
d:1

99K99K
Π1,Π2,Π3

S

with associated candidate orbifold cover X̃ 99KS(p, q, r) of hyperbolic type.
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Let D be a fundamental domain for S(p, q, r) obtained by mirroring the hy-
perbolic triangle T (p, q, r) with inner angles π

p
, π
q
, π
r
in one of its edges. Then

the candidate is realizable if an only if one can realize X̃ by gluing d copies
of D along orientation-reversing hyperbolic isometries, in such a way that,
upon mapping each copy of D to the original D, the resulting orbifold cover
X̃ → S(p, q, r) matches the covering instructions given by the original cover.

Monodromy representation (MR) We recall here a very classical view-
point dating back to [8] (see also [20]), based on the remark that a realization

of a candidate branched cover Σ̃
d:1

99K99K99K99K99K99K
(d11,...,d1m1

),...,(dn1,...,dnmn )
Σ corresponds to the

choice of its monodromy, which is a (suitable) representation of the funda-
mental group of the n-punctured sphere into the symmetric group Sd. More
precisely, one has that that a realization of the given candidate cover corre-
sponds to the choice of permutations σ1, . . . , σn ∈ Sd such that:

• σi has cycles of lengths (dij)
mi

j=1;

• the product σ1 · · ·σn is the identity;

• 〈σ1, . . . , σn〉 < Sd acts transitively on {1, . . . , d}.

For n = 3, to apply this method in practice, one should fix a permutation
σ1 with cycle lengths (d1j)

m1
j=1, let σ2 vary in the conjugacy class of permu-

tations of cycle lengths (d2j)
m2
j=1 and check whether 〈σ1, σ2〉 is transitive and

σ1 · σ2 has cycle lengths (d3j)
m1
j=3. When the degree d is high this can be

computationally quite demanding, but a C++ code [13] written by Maurizio
Monge, building also on some formulae proved in [25], refines this approach
for the special case of permutations of the form relevant to Theorem 3.2. The
program employs the correspondence between Young diagrams and represen-
tations of the symmetric group, automatically generating the p-core diagrams
(which are very easy for the particular permutations involved) to find all the
relevant characters. This, together with some computational tricks again
specific to the special permutations of Table 6, allows the program to es-
tablish within a handful of seconds the realizability of any candidate of the
appropriate type up to degree 200.
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6 Realizability and exceptionality

of the relevant candidate covers

In this section we discuss the realizability of all the 168 candidates described
in Theorems 4.1 and 4.2, thereby completing the proof of Theorems 3.1
and 3.2. We begin with the following:

Proposition 6.1. The 117 candidate surface covers described in Tables 1
to 5 and indicated there to be realizable are indeed realizable.

Proof. For each of the 117 candidates we have been able to draw a dessin
d’enfant proving realizability. To avoid showing all of them, we will present
here only one for each degree up to 12, one for each candidate having a
prime degree greater than 12, and some for the largest degrees in the tables.
See [19] for all other realizable candidates. In all our dessins, with notation
as in Tables 1 to 5, we will associate white vertices to the entries of partition
Π1 and black vertices to those in Π3, so the regions of the complement of the
dessin will correspond to the entries of Π2.

For degree up to 12 the examples we have chosen to show correspond to
items 3, 6, 15, 24, 33, 45, 60, and 62. The dessins proving that they are all
realizable are provided in Figure 1.

For degree greater than 12 the candidate covers with prime degree d in
Tables 1 to 5 are items 83, 84, 85, 86, 105, 106, 117, 137, and 142. The
dessins proving that they are all realizable are provided in Figure 2.

For each of the candidates 143, 144 and 145 a dessin d’enfant showing
its realizability is shown in Figure 3. Even if we have one, we do not show
a dessin for candidate 146 because a proof of its realizability will be given
below in Proposition 6.4 using GG.

Let us turn to the following:

Proposition 6.2. The 26 candidate surface covers described in Tables 1 to 5
and indicated there to be exceptional are indeed exceptional.

Proof. For degree up to 20 we could actually merely refer to the computer-
generated census of Zheng [25], but we prefer to give theoretical proofs. To
begin, we note that the VED criterion of Proposition 5.4 shows exception-
ality of candidates 25, 31, 49, 50, 69, 97, 98, 116 and 126. Candidates
35 and 36 are exceptional due to Proposition 5.5, while 23 and 28 due to
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3 6 15

24 33 45

60 62

Figure 1. Realization via DE of a sample of candidate covers for degree up to 12.

Propositions 1.3 and 1.2 of [20], respectively. The BD criterion of [20, Section
5] alluded to after Proposition 5.5 implies that candidates 72-78 are excep-
tional. For degrees up to 20 this leaves out only candidates 41, 57, 79, 113,
114 and 115 for which we prove exceptionality using DE in Figure 4. Here we
always associate white vertices to the entries of Π1 and black ones to those in
Π2, and we use their valences and the lengths of some of the complementary
regions to construct forced portions of dessin d’enfant in which one sees of-
fending lengths of the complementary regions and/or one finds it impossible
to get a connected dessin with the prescribed lengths of the complementary
regions.

We are left to prove exceptionality of candidates 122, 125 and 131, in
degrees 21, 22 and 24 respectively. We start with 125, for which we use DE

again. Let us try to construct a dessin with white vertices corresponding to
Π1 = (2, . . . , 2) and black vertices corresponding to Π3 = (8, 8, 4, 1, 1). The
proof that this is actually impossible is contained in Figure 5. In part (a) we
show that neither of the black 1-valent vertices can be joined to the 4-valent
one (otherwise a region of length at least 4 would arise), so both are joined to
an 8-valent one, and in part (b) we show that the two 1-valent black vertices
are joined to different 8-valent black vertices (for the same reason). Then in
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83 84 85

86 105 106

117 137 142

Figure 2. Realization via DE of the candidate covers with prime degree larger than 12.
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Figure 3. Realization via DE of the candidate covers with degrees 44, 45 and 52.

41 57

114

115

79

113

Figure 4. Exceptionality proofs via DE.
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Figure 5. Exceptionality of 125 via DE.

part (c) we show that for the region incident to only one black vertex, this
cannot be the 4-valent one; note in particular that we use part (b) in the
last passage. This implies that there is an 8-valent black vertex joined to a
1-valent one and incident to a region of length 2, and in part (d) we show
that this is impossible, once again by contradicting the fact that all regions
but one should have length 3.

To deal with 122 and 131 we will use the new techniques GM and GG

introduced in Section 5, but we prefer first to provide alternative proofs of
exceptionality and realizability in lower degree using these techniques, to
allow the reader to familiarize with them. We begin with the following:

Proposition 6.3. The candidates 28, 41 and 122 can be shown to be excep-
tional using the GM technique.

Proof. Recall that for 28 the partitions are Π1 = (2, 2, 2, 2), Π2 = (3, 3, 1, 1)
and Π3 = (5, 3), and let us try to construct a dessin with white and black
vertices associated to Π1 and Π3 respectively. Since there are two regions of
length 2, at least one of them has a 5-valent black vertex, and we apply the
move shown in Figure 6. A dessin realizing 28 would then give one realizing

the candidate S
10:1

99K99K99K99K
(2,...,2),(3,3,3,1),(6,3,1)

S, which is exceptional by [18, Theorem 3.6].
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Figure 6. Exceptionality proofs via GM.

For 41 we proceed similarly, assigning white vertices to the partition
(2, 2, 2, 2, 1) and black ones to (5, 2, 2), leaving the partition (3, 3, 3) for the
regions. The 1-valent white vertex must be joined to a 5-valent black one as
in Figure 6, so we apply the move shown, which proves that if 41 is realizable

then S
10:1

99K99K99K99K
(2,...,2),(3,3,3,1),(6,2,2)

S also is, which is false by the VED criterion.

Turning to 122 we recall that d = 21, Π1 = (2, . . . , 2, 1), Π2 = (3, . . . , 3)
and Π3 = (8, 8, 2, 2, 1). Again we use white for Π1 and black for Π3. Two
configurations as at the top of Figure 6 must exist, and the only case in which
the two edges emanating from a valence-2 black vertex end on the same black
vertex occurs in the first of these configurations; therefore, a configuration
as that to which we apply the move in Figure 6 occurs. Note that at each
valence-8 black vertex two emanating germs of edges are missing, because
we apply the move regardless of their position. After the move we get the

candidate S
15:1

99K99K99K99K
(2,...,2,1),(3,...,3),(6,6,2,1)

S, which is exceptional by [18, Theorem 3.6],

and the proof is complete.

We now turn to the GG technique, that we first employ to provide al-
ternative proofs of three already shown realizability results, and of one such
result not explicitly given above. One more such realizability result will be
proved below in Proposition 6.6.

Proposition 6.4. The candidates 1, 10, 13, and 132 can be shown to be
realizable using the GG technique.

Proof. For the first three candidates we show a realization in Figure 7, as we
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Figure 7. Realizability proofs via GG.

now explain. For 1 we should have a cover S(2, 2, 2, 4)
5:1
99KS(2, 4, 5) with cov-

ering instructions (2, 2, 2) 99K2 and 4 99K 4. In the figure we show S(2, 4, 5)
as a gluing of two copies of the hyperbolic triangle T (2, 4, 5) with inner angles
π
2
, π
4
, π
5
. The cone points of orders 2, 4, 5 are respectively A,B,C. And in the

same figure we show S(2, 2, 2, 4) as a gluing of 10 copies of T (2, 4, 5). This

induces a covering S(2, 2, 2, 4)
5:1
−→S(2, 4, 5) with each Ai, Bi, Ci mapped re-

spectively to A,B,C. Since the cone points of S(2, 2, 2, 4) are A1, A2, A3 of
order 2 and B1 of order 4, the required covering instructions are realized.
Note that A4 and B2 are obviously non-singular, and so is C1, because there
are 10 angles π

5
incident to it.

The argument for 10 is similar. We must realize S(4, 4, 4, 4)
6:1
99KS(3, 4, 4)

with the instructions (4, 4) 99K 4 and (4, 4) 99K 4 (which are automatic in this
case). In Figure 7 the cone points of S(3, 4, 4) are A,B,C of orders 3, 4, 4
respectively, and those of S(4, 4, 4, 4) are B2, B3, C2, C3 all of order 4, so the
cover is as desired.

For 13 we must realize S(2, 2, 2, 3)
7:1
99KS(2, 3, 7) with, of course, (2, 2, 2) →
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Figure 8. Realizability of candidate 132 via GG.

2 and 3 → 3. Here the cone points are A,B,C of orders 2, 3, 7 in S(2, 3, 7),
and A3, A4, A5 of order 2 and B1 of order 3 in S(2, 2, 2, 3).

We now turn to 132, which is treated in Figure 8. The cover to be realized

is S(5, 5, 5, 5)
24:1
99KS(2, 4, 5) with (of course) instructions (5, 5, 5, 5) 99K5. For

S(2, 4, 5) the fundamental domain is the same used for 1, and the reader can
check that Figure 8 contains 48 copies of T (2, 4, 5) giving S(5, 5, 5, 5) with
cone points at C1, C2, C3, C4.

Proposition 6.5. The candidates 23 and 131 can be shown to be exceptional
using the GG technique.

Proof. To 23 we associate S(2, 3, 3, 6)
8:1
99KS(2, 4, 6) with (2, 3, 3, 6) 99K6. We

show the fundamental domain D of S(2, 4, 6) in Figure 9, with cone points
of order 2, 4, 6 at A,B,C. Since, in a realization of the candidate, B is
covered by two non-singular points (and four singular ones), of the 8 copies
of D there must be 4 around some B1 and the other four around some B2.
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Figure 9. Exceptionality of candidate 23 via GG.

Now A is also covered by non-singular points, which implies that no edge
A∗C∗ is glued to the adjacent A∗C∗. In other words, each (straight) segment
C∗A∗C∗ can be regarded as a single edge, and gets glued to another such
segment. Since S(2, 3, 3, 6) is connected, the two blocks of 4 copies of D
already described are glued together, forming a single block of 8 copies of D
with 6 free edges of type C∗A∗C∗. But, to get a cone point of order 6, at
some top or bottom C∗, say C1, we must have a gluing as shown in the figure.
We now abandon hyperbolically correct pictures and use combinatorial ones,
but we keep track of geometry. To do this we note that the block of 8 copies
of D, after performing the gluing shown, becomes a “quadrangle” (because
we can ignore the A∗’s) with inner angles π, 2

3
π, π

3
, π
3
(and an inner cone point

of order 6, not shown in the picture). As shown in Figure 9, there are now
three ways to pair the edges of this quadrangle by orientation-reversing maps.
Since we have already realized a cone point at C1 of angle 2π

6
, these gluings

give rise to a hyperbolic cone surface as follows:

• based on the sphere, with cone angles 2π
6
, 2π

6
, 2π

3
, 4π

3
;
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• based on the torus with cone angles 2π
6
, 7π

3
;

• based on the sphere with cone angles 2π
6
, 2π

6
, 2π

2
, 2π

2
.

Neither of these is the desired S(2, 3, 3, 6), and the exceptionality of 23 is
proved. We note however that if one disregards geometry the previous gluings
do give rise of realizations of candidate branched covers of degree 8, but not
of the desired one. Namely:

• S
8:1

99K99K99K99K
(2,2,2,2),(4,2,1,1),(4,4)

S, with the associated Euclidean S(2, 4, 4) 99KS(2, 4, 4);

• T
8:1

99K99K99K99K
(2,2,2,2),(7,1),(4,4)

S, with associated T (7) 99KS(2, 4, 7);

• S
8:1

99K99K99K99K
(2,2,2,2),(3,3,1,1),(4,4)

S with the associated spherical S(3, 3) 99KS(2, 3, 4).

Turning to 131, the associated candidate is S(3, 9, 9, 9)
24:1
99KS(2, 3, 9) with

instructions (3, 9, 9, 9) 99K9. We show in Figure 10 its fundamental domain
D, with cone orders 2, 3, 9 at A,B,C. As for 23, using the fact that A must
be covered by non-singular points, we see we can forget A, and redraw D
as a combinatorial triangle, but keeping track of its geometry by writing the
angles at the vertices, with α = π

9
. Since C is covered by two non-singular

points, one of order 3 and three of order 9, the 24 copies of D can be grouped
in two groups of 9 copies giving the blocks n1, n2 with nine edges, 3 copies
giving blocks o1, o2, o3 with one edge, and 3 copies giving a block t with
three edges. Note that at this stage all vertices should cover B and they all
have angle 6α = 2

3
π. We should now assemble the blocks so that at each

glued vertex the total angle is 18α = 2π, because all points covering B are
non-singular. This implies that gluing the edge of some oi to another edge
e of some block forces the two edges of the block adjacent to e to be glued
together. Therefore, no oi is glued to t, and (up to change of notation) o1
and o2 are glued to n1, while o3 is glued to n2. This gives two new blocks h
and t′, with angles as shown, that we must now use with t. The edge of t′

whose ends have angle 12α must be glued to an edge whose ends have angle
6α, and two more gluings are then forced. This implies that the said edge
of t′ is not glued to t, and there are two ways up to symmetry to glue it to
an edge of h. One of them gives a triangle with angles 6α, 6α, 24α, and the
other one a triangle with angles 6α, 12α, 18α, which easily implies that the
process cannot be carried to the end.
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Figure 10. Exceptionality of 131 via GG.

This concludes the proof of Proposition 6.2.

As already announced we now show via GG that our highest degree can-
didate is realizable, which was not explicitly done within the proof of Propo-
sition 6.1.

Proposition 6.6. The candidate 146 can be shown to be realizable using the
GG technique.

Proof. We must realize S(7, 7, 7, 7)
60:1
99KS(2, 3, 7) with (7, 7, 7, 7) → 7. If

A,B,C are the cone points of orders 2, 3, 7, the fact that A is covered by
non-singular points implies as above that we can ignore it, then we must use
60 copies of a triangle with vertices B,B,C and angles π

3
, π
3
, 2
7
π. Taking into

account the way C is covered we then get blocks hi for i = 1, . . . , 8 and oi
for i = 1, 2, 3, 4, as shown in Figure 11, with α = π

3
, that we must assemble

creating non-singular points only, that is, having angle 6α = 2π. Gluing oi to
hi+4 we get the blocks qi for i = 1, 2, 3, 4, and we still have hi for i = 1, 2, 3, 4.
Now we glue the two edges of qi separated by the vertex with angle 4α to an
edge of hi, getting the blocks h′

i for i = 1, 2, 3, 4. We glue them in pairs as
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Figure 11. Realizability of 146 via GG.

illustrated, getting two blocks q′i for i = 1, 2, that we can now glue together
to finish the process.

The analysis of candidates with associated S(α, β, γ, δ) 99KS(p, q, r) is
complete, so we turn to the case T (α) 99KS(p, q, r). We begin with:

Proposition 6.7. The 17 candidate surface covers described in Table 6 and
indicated there to be realizable are indeed realizable.

Proof. Again we simply exhibit one dessin d’enfant for each relevant candi-
date, which is done in Figures 12 and 13. In all our dessins we associate
white vertices to the entries of partition Π1 and black vertices to those in Π2,
so the regions of the complement correspond to the entries of Π3.

To conclude the proof of Theorem 3.2 one would now need to show excep-
tionality of candidates 152, 163, 164, 166 and 168. We have actually done
this using the MR criterion and the code [13], as explained in Section 5. We
will however show here the same fact in a geometric fashion for the smallest
and for the largest candidates:

Proposition 6.8. Candidates 152 and 168 can be shown to be exceptional
using the GG technique.

Proof. For 152 we should realize T (2)
6:1
99KS(3, 3, 4) with (of course) 2 →

4. Taking the cone orders 3, 3, 4 at A,B,C we should then assemble 12
copies of a triangle with vertices A,B,C getting, after the gluing, vertices
A1, A2, B1, B2 each adjacent to 6 triangles. Taking into account this property
for A1, A2, B1 we get the pattern first shown in Figure 14, and taking into
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Figure 12. Dessins d’enfant realizing the candidate covers with degree up to 12.

165 167

Figure 13. Dessins d’enfant realizing the candidate covers with degree greater than 12
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Figure 14. Exceptionality of 152 via GG.

account also B2 we get the two possible patterns also shown in the figure.
These patterns do not give orbifolds, because in the first one the cone angle
at C1 is 5π

2
, and in the second one the cone angles at C1, C2 are 3π

2
. Note

however that combinatorially they give realization of candidate 151 and of

the Euclidean T
6:1
99KS(3, 3, 3).

Turning to 168, we confine ourselves to a sketch, because the complete
argument is long. We should realize T (7) gluing 72 copies of T (2, 3, 7). Using
the fact that 2 is covered by smooth points and 7 is covered by 5 smooth
points and one of order 7, we see that the triangles must get assembled into
5 heptagons and one monogon, all with angles 2α, with α = π

3
. For short, let

us write n instead of nα. We should now glue these blocks getting angle 6 at
all vertices. In particular when after a partial gluing an angle of 6 is reached,
an extra gluing of edges is forced. Gluing the monogon to one heptagon
we see the latter gets replaced by square with angles 2, 2, 2, 4. This square
cannot glue to itself, so another heptagon gets replaced by one with angles
4, 2, 4, 2, 2, 2, 2 (in this order). Checking various possibilities one sees that an
edge incident to an angle 4 of this heptagon cannot be glued to an edge of
the same heptagon, so, from the 3 original heptagons left, one gets replaced
by a decagon with angles 4, 4, 2, 2, 2, 4, 2, 2, 2, 2. The edge of the decagon
with angle 4 at both ends cannot be glued to another edge of the decagon,
so one of the two remaining original heptagons gets replaced by an 11-gon
with angles 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2. At least one edge of the heptagon gets
glued to an edge of this 11-gon, and there are 6 possibilities up to symmetry.
Looking at them we reduce to a single block, that is either a 14-gon with
angles

2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2 or 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2
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or a 16-gon with angles

4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 2, 2, 4, 2 or 4, 2, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 2, 4, 2.

And with some patience one sees that from one such block it is impossible
to get a torus imposing angle 6 at all vertices.
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