26,266 research outputs found

    The Generation of Magnetic Fields Through Driven Turbulence

    Full text link
    We have tested the ability of driven turbulence to generate magnetic field structure from a weak uniform field using three dimensional numerical simulations of incompressible turbulence. We used a pseudo-spectral code with a numerical resolution of up to 1443144^3 collocation points. We find that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipartition between the kinetic and magnetic energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equipartition scale the velocity structure is, as expected, nearly isotropic. The magnetic field structure at these scales is uncertain, but the field correlation function is very weak. At the equipartition scale the magnetic fields show only a moderate degree of anisotropy, so that the typical radius of curvature of field lines is comparable to the typical perpendicular scale for field reversal. In other words, there are few field reversals within eddies at the equipartition scale, and no fine-grained series of reversals at smaller scales. At scales below the equipartition scale, both velocity and magnetic structures are anisotropic; the eddies are stretched along the local magnetic field lines, and the magnetic energy dominates the kinetic energy on the same scale by a factor which increases at higher wavenumbers. We do not show a scale-free inertial range, but the power spectra are a function of resolution and/or the imposed viscosity and resistivity. Our results are consistent with the emergence of a scale-free inertial range at higher Reynolds numbers.Comment: 14 pages (8 NEW figures), ApJ, in press (July 20, 2000?

    Coherent cross-talk and parametric driving of matter-wave vortices

    Full text link
    We show that the interaction between vortices and sound waves in atomic Bose-Einstein condensates can be elucidated in a double-well trap: with one vortex in each well, the sound emitted by each precessing vortex can be driven into the opposing vortex (if of the same polarity). This cross-talk leads to a periodic exchange of energy between the vortices which is long-range and highly efficient. The increase in vortex energy (obtained by numerical simulations of the Gross-Pitaevskii equation) is significant and experimentally observable as a migration of the vortex to higher density over just a few precession periods. Similar effects can be controllably engineered by introducing a precessing localised obstacle into one well as an artificial generator of sound, thereby demonstrating the parametric driving of energy into a vortex.Comment: 12 pages, 13 figure

    Vortex reconnections in atomic condensates at finite temperature

    Full text link
    The study of vortex reconnections is an essential ingredient of understanding superfluid turbulence, a phenomenon recently also reported in trapped atomic Bose-Einstein condensates. In this work we show that, despite the established dependence of vortex motion on temperature in such systems, vortex reconnections are actually temperature independent on the typical length/time scales of atomic condensates. Our work is based on a dissipative Gross-Pitaevskii equation for the condensate, coupled to a semiclassical Boltzmann equation for the thermal cloud (the Zaremba-Nikuni-Griffin formalism). Comparison to vortex reconnections in homogeneous condensates further show reconnections to be insensitive to the inhomogeneity in the background density.Comment: 6 pages, 4 figure

    Two-scale structure of the electron dissipation region during collisionless magnetic reconnection

    Full text link
    Particle in cell (PIC) simulations of collisionless magnetic reconnection are presented that demonstrate that the electron dissipation region develops a distinct two-scale structure along the outflow direction. The length of the electron current layer is found to decrease with decreasing electron mass, approaching the ion inertial length for a proton-electron plasma. A surprise, however, is that the electrons form a high-velocity outflow jet that remains decoupled from the magnetic field and extends large distances downstream from the x-line. The rate of reconnection remains fast in very large systems, independent of boundary conditions and the mass of electrons.Comment: Submitted to Physical Review Letters, 4 pages, 4 figure

    Phase transformation in Si from semiconducting diamond to metallic beta-Sn phase in QMC and DFT under hydrostatic and anisotropic stress

    Get PDF
    Silicon undergoes a phase transition from the semiconducting diamond phase to the metallic beta-Sn phase under pressure. We use quantum Monte Carlo calculations to predict the transformation pressure and compare the results to density functional calculations employing the LDA, PBE, PW91, WC, AM05, PBEsol and HSE06 exchange-correlation functionals. Diffusion Monte Carlo predicts a transition pressure of 14.0 +- 1.0 GPa slightly above the experimentally observed transition pressure range of 11.3 to 12.6 GPa. The HSE06 hybrid functional predicts a transition pressure of 12.4 GPa in excellent agreement with experiments. Exchange-correlation functionals using the local-density approximation and generalized-gradient approximations result in transition pressures ranging from 3.5 to 10.0 GPa, well below the experimental values. The transition pressure is sensitive to stress anisotropy. Anisotropy in the stress along any of the cubic axes of the diamond phase of silicon lowers the equilibrium transition pressure and may explain the discrepancy between the various experimental values as well as the small overestimate of the quantum Monte Carlo transition pressure

    Complex itinerant ferromagnetism in noncentrosymmetric Cr11Ge19

    Full text link
    The noncentrosymmetric ferromagnet Cr11Ge19 has been investigated by electrical transport, AC and DC magnetization, heat capacity, x-ray diffraction, resonant ultrasound spectroscopy, and first principles electronic structure calculations. Complex itinerant ferromagnetism in this material is indicated by nonlinearity in conventional Arrott plots, unusual behavior of AC susceptibility, and a weak heat capacity anomaly near the Curie temperature (88 K). The inclusion of spin wave excitations was found to be important in modeling the low temperature heat capacity. The temperature dependence of the elastic moduli and lattice constants, including negative thermal expansion along the c axis at low temperatures, indicate strong magneto-elastic coupling in this system. Calculations show strong evidence for itinerant ferromagnetism and suggest a noncollinear ground state may be expected
    corecore