2,693 research outputs found

    Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries

    Get PDF
    A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian quantization of general massive gauge theories. The superalgebra os0(1,2) is considered as subalgebra of sl(1,2); the latter may be considered as the algebra of generators of the conformal group in a superspace with two anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper solutions of the quantum master equations in the osp(1,2)-covariant formalism are realized in that superspace as invariance under translations combined with mass-dependent special conformal transformations. The Sp(2) symmetry - in particular the ghost number conservation - and the "new ghost number" conservation are realized as invariance under symplectic rotations and dilatations, respectively. The transformations of the gauge fields - and of the full set of necessarily required (anti)ghost and auxiliary fields - under the superalgebra sl(1,2) are determined both for irreducible and first-stage reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference

    Coherent frequentism

    Full text link
    By representing the range of fair betting odds according to a pair of confidence set estimators, dual probability measures on parameter space called frequentist posteriors secure the coherence of subjective inference without any prior distribution. The closure of the set of expected losses corresponding to the dual frequentist posteriors constrains decisions without arbitrarily forcing optimization under all circumstances. This decision theory reduces to those that maximize expected utility when the pair of frequentist posteriors is induced by an exact or approximate confidence set estimator or when an automatic reduction rule is applied to the pair. In such cases, the resulting frequentist posterior is coherent in the sense that, as a probability distribution of the parameter of interest, it satisfies the axioms of the decision-theoretic and logic-theoretic systems typically cited in support of the Bayesian posterior. Unlike the p-value, the confidence level of an interval hypothesis derived from such a measure is suitable as an estimator of the indicator of hypothesis truth since it converges in sample-space probability to 1 if the hypothesis is true or to 0 otherwise under general conditions.Comment: The confidence-measure theory of inference and decision is explicitly extended to vector parameters of interest. The derivation of upper and lower confidence levels from valid and nonconservative set estimators is formalize

    Modeling quark-hadron duality for relativistic, confined fermions

    Full text link
    We discuss a model for the study of quark-hadron duality in inclusive electron scattering based on solving the Dirac equation numerically for a scalar confining linear potential and a vector color Coulomb potential. We qualitatively reproduce the features of quark-hadron duality for all potentials considered, and discuss similarities and differences to previous models that simplified the situation by treating either the quarks or all particles as scalars. We discuss the scaling results for PWIA and FSI, and the approach to scaling using the analog of the Callan-Gross relation for y-scaling.Comment: 38 pages, 21 figure

    Binary optical communication in single-mode and entangled quantum noisy channels

    Full text link
    We address binary optical communication in single-mode and entangled quantum noisy channels. For single-mode we present a systematic comparison between direct photodetection and homodyne detection in realistic conditions, i.e. taking into account the noise that occurs both during the propagation and the detection of the signals. We then consider entangled channels based on twin-beam state of radiation, and show that with realistic heterodyne detection the error probability at fixed channel energy is reduced in comparison to the single-mode cases for a large range of values of quantum efficiency and noise parameters

    Generation of phase-coherent states

    Get PDF
    An interaction scheme involving nonlinear χ(2)\chi^{(2)} media is suggested for the generation of phase-coherent states (PCS). The setup is based on parametric amplification of vacuum followed by up-conversion of the resulting twin-beam. The involved nonlinear interactions are studied by the exact numerical diagonalization. An experimentally achievable working regime to approximate PCS with high conversion rate is given, and the validity of parametric approximation is discussed.Comment: To appear in PRA -- More info at http://enterprise.pv.infn.it

    Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization

    Full text link
    We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 ÎĽ\mum thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87^{87}Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture

    A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem

    Full text link
    We consider the overdamped limit of two-dimensional double well systems perturbed by weak noise. In the weak noise limit the most probable fluctuational path leading from either point attractor to the separatrix (the most probable escape path, or MPEP) must terminate on the saddle between the two wells. However, as the parameters of a symmetric double well system are varied, a unique MPEP may bifurcate into two equally likely MPEP's. At the bifurcation point in parameter space, the activation kinetics of the system become non-Arrhenius. In this paper we quantify the non-Arrhenius behavior of a system at the bifurcation point, by using the Maslov-WKB method to construct an approximation to the quasistationary probability distribution of the system that is valid in a boundary layer near the separatrix. The approximation is a formal asymptotic solution of the Smoluchowski equation. Our analysis relies on the development of a new scaling theory, which yields `critical exponents' describing weak-noise behavior near the saddle, at the bifurcation point.Comment: LaTeX, 60 pages, 24 Postscript figures. Uses epsf macros to include the figures. A file in `uufiles' format containing the figures is separately available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/figures.uu and a Postscript version of the whole paper (figures included) is available at ftp://platinum.math.arizona.edu/pub/papers-rsm/paperF/paperF.p

    Quark-hadron duality in a relativistic, confining model

    Get PDF
    Quark-hadron duality is an interesting and potentially very useful phenomenon, as it relates the properly averaged hadronic data to a perturbative QCD result in some kinematic regions. While duality is well established experimentally, our current theoretical understanding is still incomplete. We employ a simple model to qualitatively reproduce all the features of Bloom-Gilman duality as seen in electron scattering. In particular, we address the role of relativity, give an explicit analytic proof of the equality of the hadronic and partonic scaling curves, and show how the transition from coherent to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan Isgur. (34 pages, 13 figures
    • …
    corecore