66 research outputs found

    Crustal strain in central Greece from repeated GPS measurements in the interval 1989-1997

    Get PDF
    A 66-station GPS network spanning central Greece, first observed in 1989, has been occupied fully on three occasions: June 1989, October 1991 and May 1993. Subsets of this network bounding the Gulf of Korinthos have also been occupied in June 1995, October 1995, May 1996 and September/October 1997. The first three occupations were processed using a fiducial GPS methodology, whereas later surveys were processed using CODE precise orbits. Combination of data from different surveys to yield smooth site velocities requires global network translations at each epoch to compensate for errors in the realization of the reference frame. This method provides a posteriori estimates of the relative coordinate errors and reference frame noise. Only one earthquake, the 1995 June 15 Egion event, has caused significant local coseismic displacement, and its effects on the interseismic velocity field are removed using an elastic dislocation model. We constrain the orientation of the 100 yr triangulation—GPS velocity estimates of Davies et al. (1997) using 14 sites common to the two networks. The goodness of fit of this transformation indicates that the short-term and 100 yr geodetic estimates of deformation are highly compatible. We infer that short-term geodetic studies are capable of determining longer-term deformation rates provided that transient, local effects can be modelled. From the combined velocity field, we estimate principal strains and rigid-body rotation rates at points on a regular grid using data from neighbouring sites. Strain rates are high within the Gulf of Korinthos and much lower elsewhere. The extension rate across the Gulf of Korinthos increases from east to west. Comparison of the extension rate with historical and recent rates of seismic release of strain reveals significant medium-term seismic hazard in the western Gulf of Korinthos, and may also indicate long-term aseismic strai

    Evaluation of ocean circulation models in the computation of the mean dynamic topography for geodetic applications. Case study in the Greek seas

    No full text
    Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches

    Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone

    No full text
    We present evidence that GPS velocity estimates of plate motions and fault slip rates agree to within uncertainties with geologic estimates during the most recent phase of the geologic evolution of the E Mediterranean region (post-Late Miocene). On this basis, we use the GPS differential velocities to estimate the timing of initiation of the principal structures in NW Turkey, the N Aegean Sea, and central Greece, including, the Marmara Sea, the Gulfs of Evia (GoE) and Corinth (GoC), and the Kephalonia Transform fault (KTF). We interpret these ages to indicate that the North Anatolian fault propagated across the N Aegean, opening the GoE and GoC and initiating the KTF, during the past 1-4 Ma. We further suggest that Aegean extension that was earlier more distributed across the Aegean Basin became focused on this new fault system allowing the southern Aegean and Peloponnisos to translate SW with little internal deformation, as observed today with GPS. This change in tectonic configuration may account for the clear geologic evidence for crustal thinning throughout the S Aegean in apparent contradiction with low present-day strain rates. We further show that the low present-day strain rate along the southern edge of the Aegean micro-plate requires substantial aseismic slip along the plate interface below Crete, consistent with the low level of historic, subduction-type earthquakes along this segment of the subduction zone

    Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone

    No full text
    International audienceWe present evidence that GPS velocity estimates of plate motions and fault slip rates agree to within uncertainties with geologic estimates during the most recent phase of the geologic evolution of the E Mediterranean region (post-Late Miocene). On this basis, we use the GPS differential velocities to estimate the timing of initiation of the principal structures in NW Turkey, the N Aegean Sea, and central Greece, including, the Marmara Sea, the Gulfs of Evia (GoE) and Corinth (GoC). and the Kephalonia Transform fault (KTF). We interpret these ages to indicate that the North Anatolian fault propagated across the N Aegean, opening the GoE and GoC and initiating the KTF, during the past 1-4 Ma. We further suggest that Aegean extension that was earlier more distributed across the Aegean Basin became focused on this new fault system allowing the southern Aegean and Peloponnisos to translate SW with little internal deformation, as observed today with GPS. This change in tectonic configuration may account for the clear geologic evidence for crustal thinning throughout the S Aegean in apparent contradiction with low present-day strain rates. We further show that the low present-day strain rate along the southern edge of the Aegean micro-plate requires substantial aseismic slip along the plate interface below Crete, consistent with the low level of historic, subduction-type earthquakes along this segment of the subduction zone

    Geodetic strain of Greece in the interval 1892-1992

    No full text
    A first-order triangulation of Greece was carried out in the 1890s. Reoccupation, using Global Positioning System receivers, of 46 of the 93 original markers yielded estimates of the deformation of the region over the intervening interval. Broad regions have similar geodetic strain over the 100-year time span. Strain north of the Gulf of Korinthos is predominantly north-south extension, though with a significant east-west component. The central Peloponnisos is relatively stable, whereas the gulfs of the southern Peloponnisos are all characterized by uniaxial east-west extension. The seismic expression of strain for the entire region, calculated from the seismic moment tensors of earthquakes of MS ≥ 5.8 during the past 100 years, accounts for only 20-50% of the geodetically determined strain. At a scale of 50-100 km, the fraction of the strain that is expressed seismically varies much more than this range. In particular, whereas seismic strain in the eastern Gulf of Korinthos over the past 100 years is commensurate with the geodetic strain, there is rapid extension across the western Gulf of Korinthos (∼0.3 μstrain yr-1), with negligible seismic strain for the 100 year period prior to 1992. The Egion earthquake of June 1995 in the western Gulf of Korinthos released only a small proportion (≤20%) of the elastic strain that had accumulated in that region. The observed distribution of displacements can be explained by the relative rotation of two plates with a broad accommodation zone between them, but it is equally consistent with the deformation that would be expected of a sheet of fluid moving toward a low-pressure boundary at the Hellenic Trench. A simple calculation implies that if the region does behave as a fluid, then its effective viscosity is ∼1022-1023 Pa s. Such viscosities are consistent with the deformation of a lithosphere obeying a rheological law similar to that obtained for olivine in the laboratory
    • …
    corecore