7,552 research outputs found

    Searching for continuous gravitational wave signals: the hierarchical Hough transform algorithm

    Get PDF
    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk we will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere. In this talk we will focus on some of the implementational aspects we are currently concerned with.Comment: 9 pages, 1 figure. To appear in the proceedings of the conference ``Gravitational waves: a challenge to theoretical astrophysics'', (June 5-9 2000, Trieste), ICTP Lecture Notes Serie

    Constrained Molecular Dynamics II: a N-body approach to nuclear systems

    Full text link
    In this work we illustrate the basic development of the constrained molecular dynamics applied to the N-body problem in nuclear physics. The heavy computational taskes related to quantum effects, to the presence of the "hard core" repulsive interaction have been worked out by defining a set of transformations based on the concept of impulsive forces. In particular in the implemented version II of the Constrained Molecular Dynamics model the problem related to the non conservation of the total angular momentum has been solved. This problem can affect others semiclassical microscopic approaches as due to the "hard core" repulsive interaction or to the use of stochastic forces. The effect of the restored conservation law on the fusion cross section for 40Ca+40Ca system is also briefly discussed.Comment: Tex version 3.1459 (Web2C 7.3.1);main text+fig.cap in .tex 13 page; +4 figures .ps;the order and the numerical label of the figure files reflect the figure numbers in the main tex and captions, Submited to Journal of computational physic

    Mass gap in the 2D O(3) non-linear sigma model with a theta=pi term

    Full text link
    By analytic continuation to real theta of data obtained from numerical simulation at imaginary theta we study the Haldane conjecture and show that the O(3) non-linear sigma model with a theta term in 2 dimensions becomes massless at theta=3.10(5). A modified cluster algorithm has been introduced to simulate the model with imaginary theta. Two different definitions of the topological charge on the lattice have been used; one of them needs renormalization to match the continuum operator. Our work also offers a successful test for numerical methods based on analytic continuation.Comment: Latex file, 4 pages. To appear in PRD; it contains the justification of analicity, more details about the fits, more references, et

    Random template banks and relaxed lattice coverings

    Full text link
    Template-based searches for gravitational waves are often limited by the computational cost associated with searching large parameter spaces. The study of efficient template banks, in the sense of using the smallest number of templates, is therefore of great practical interest. The "traditional" approach to template-bank construction requires every point in parameter space to be covered by at least one template, which rapidly becomes inefficient at higher dimensions. Here we study an alternative approach, where any point in parameter space is covered only with a given probability < 1. We find that by giving up complete coverage in this way, large reductions in the number of templates are possible, especially at higher dimensions. The prime examples studied here are "random template banks", in which templates are placed randomly with uniform probability over the parameter space. In addition to its obvious simplicity, this method turns out to be surprisingly efficient. We analyze the statistical properties of such random template banks, and compare their efficiency to traditional lattice coverings. We further study "relaxed" lattice coverings (using Zn and An* lattices), which similarly cover any signal location only with probability < 1. The relaxed An* lattice is found to yield the most efficient template banks at low dimensions (n < 10), while random template banks increasingly outperform any other method at higher dimensions.Comment: 13 pages, 10 figures, submitted to PR

    Phase diagram of QCD with two degenerate staggered quarks

    Full text link
    We present preliminary results about the critical line of QCD with two degenerate staggered quarks at nonzero temperature and chemical potential, obtained by the method of analytic continuation. As in our previous studies with different numbers of colors and flavors, we find deviations from a simple quadratic dependence on the chemical potential. We comment on the shape of the critical line at real chemical potential and give an estimate of the curvature of the critical line, both for quark chemical potential and isospin chemical potential.Comment: 7 pages, 6 figures, talk presented at Lattice 2011, The XXIX International Symposium on Lattice Field Theory, Squaw Valley, Lake Tahoe, California, USA, July 11-16, 201

    Analytical continuation from imaginary to real chemical potential in 2-color QCD under scrutiny

    Full text link
    The method of analytical continuation from imaginary to real chemical potential is tested in 2-color QCD. In comparison to previous studies in the same theory, an exact updating algorithm is used and simulations are performed closer to the thermodynamic limit. It is shown that the method considerably improves if suitable functions are used to interpolate data with imaginary chemical potential.Comment: 7 pages, 5 figures, Lattice 2006 (High Temperature and Density

    Edge Magnetoplasmons in Quantum Hall Line Junction Systems

    Full text link
    A quantum Hall line junction system consists of a one-dimensional Luttinger liquid (LL) and two chiral channels that allow density waves incident upon and reflected by the LL to be measured separately. We demonstrate that interactions in a quantum Hall line junction system can be probed by studying edge magnetoplasmon absorption spectra and their polarization dependences. Strong interactions in the junction lead to collective modes that are isolated in either Luttinger liquid or contact subsystems.Comment: 4 pages, 3 figures, submitted to Phys. Rev. B Rapid Communicatio
    corecore