343 research outputs found
Physical properties of Tolman-Bayin solutions: some cases of static charged fluid spheres in general relativity
In this article, Einstein-Maxwell space-time has been considered in
connection to some of the astrophysical solutions as previously obtained by
Tolman (1939) and Bayin (1978). The effect of inclusion of charge into these
solutions has been investigated thoroughly and also the nature of fluid
pressure and mass density throughout the sphere have been discussed.
Mass-radius and mass-charge relations have been derived for various cases of
the charged matter distribution. Two cases are obtained where perfect fluid
with positive pressures give rise to electromagnetic mass models such that
gravitational mass is of purely electromagnetic origin.Comment: 15 pages, 12 figure
Human activin-A is expressed in the atherosclerotic lesion and promotes the contractile phenotype of smooth muscle cells
Activin is a member of the transforming growth factor-beta superfamily,
and it modulates the proliferation and differentiation of various target
cells. In this study, we investigated the role of activin in the
initiation and progression of human atherosclerosis. The expression of
activin, its physiological inhibitor follistatin, and activin receptors
were assayed in human vascular tissue specimens that repr
Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms
Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other ‘psychedelics’ yet were related to clinical outcomes. A ‘reset’ therapeutic mechanism is proposed
A transonic collisionless model of the solar wind
Because of the semi-collisional nature of the solar wind, the collisionless
or exospheric approach as well as the hydrodynamic one are both inaccurate.
However, the advantage of simplicity makes them useful for enlightening some
basic mechanisms of solar wind acceleration. Previous exospheric models have
been able to reproduce winds that were already nearly supersonic at the
exobase, the altitude above which there are no collisions. In order to allow
transonic solutions, a lower exobase has to be considered, in which case the
protons are experiencing a non-monotonic potential energy profile. This is done
in the present work. In this model, the electron velocity distribution in the
corona is assumed non-thermal. Parametric results are presented and show that
the high acceleration obtained does not depend on the details of the
non-thermal distributions. This acceleration seems, therefore, to be a robust
result produced by the presence of a sufficient number of suprathermal
electrons. A method for improving the exospheric description is also given,
which consists in mapping particle orbits in terms of their invariants of
motion.Comment: 18 pages, 18 figures, accepted for publication in The Astrophysical
Journal (1 May 2004
Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis
Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides
- …