169 research outputs found

    Dendritic-Cell-Based Therapeutic Cancer Vaccines

    Get PDF
    The past decade has seen tremendous developments in novel cancer therapies through the targeting of tumor-cell-intrinsic pathways whose activity is linked to genetic alterations and the targeting of tumor-cell-extrinsic factors, such as growth factors. Furthermore, immunotherapies are entering the clinic at an unprecedented speed after the demonstration that T cells can efficiently reject tumors and that their antitumor activity can be enhanced with antibodies against immune-regulatory molecules (checkpoint blockade). Current immunotherapy strategies include monoclonal antibodies against tumor cells or immune-regulatory molecules, cell-based therapies such as adoptive transfer of ex-vivo-activated T cells and natural killer cells, and cancer vaccines. Herein, we discuss the immunological basis for therapeutic cancer vaccines and how the current understanding of dendritic cell and T cell biology might enable the development of next-generation curative therapies for individuals with cancer

    Humanized mice: are we there yet?

    Get PDF
    Animal models have been instrumental in increasing the understanding of human physiology, particularly immunity. However, these animal models have been limited by practical considerations and genetic diversity. The creation of humanized mice that carry partial or complete human physiological systems may help overcome these obstacles. The National Institute of Allergy and Infectious Diseases convened a workshop on humanized mouse models for immunity in Bethesda, MD, on June 13–14, 2005, during which researchers discussed the benefits and limitations of existing animal models and offered insights into the development of future humanized mouse models

    Expansion of Melanoma-specific Cytolytic CD8+ T Cell Precursors in Patients with Metastatic Melanoma Vaccinated with CD34+ Progenitor-derived Dendritic Cells

    Get PDF
    Cancer vaccines aim at inducing (a) tumor-specific effector T cells able to reduce/eliminate the tumor mass, and (b) long-lasting tumor-specific memory T cells able to control tumor relapse. We have shown earlier, in 18 human histocompatibility leukocyte antigen (HLA)-A*0201 patients with metastatic melanoma, that vaccination with peptide-loaded CD34–dendritic cells (DCs) leads to expansion of melanoma-specific interferon γ–producing CD8+ T cells in the blood. Here, we show in 9 out of 12 analyzed patients the expansion of cytolytic CD8+ T cell precursors specific for melanoma differentiation antigens. These precursors yield, upon single restimulation with melanoma peptide–pulsed DCs, cytotoxic T lymphocytes (CTLs) able to kill melanoma cells. Melanoma-specific CTLs can be grown in vitro and can be detected in three assays: (a) melanoma tetramer binding, (b) killing of melanoma peptide–pulsed T2 cells, and (c) killing of HLA-A*0201 melanoma cells. The cytolytic activity of expanded CTLs correlates with the frequency of melanoma tetramer binding CD8+ T cells. Thus, CD34-DC vaccines can expand melanoma-specific CTL precursors that can kill melanoma antigen–expressing targets. These results justify the design of larger follow-up studies to assess the immunological and clinical response to peptide-pulsed CD34-DC vaccines

    Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease characterized by flares of high morbidity. Using oligonucleotide microarrays, we now show that active SLE can be distinguished by a remarkably homogeneous gene expression pattern with overexpression of granulopoiesis-related and interferon (IFN)-induced genes. Using the most stringent statistical analysis (Bonferroni correction), 15 genes were found highly up-regulated in SLE patients, 14 of which are targets of IFN and one, defensin DEFA-3, a major product of immature granulocytes. A more liberal correction (Benjamini and Hochberg correction) yielded 18 additional genes, 12 of which are IFN-regulated and 4 granulocyte-specific. Indeed immature neutrophils were identified in a large fraction of SLE patients white blood cells. High dose glucocorticoids, a standard treatment of disease flares, shuts down the interferon signature, further supporting the role of this cytokine in SLE. The expression of 10 genes correlated with disease activity according to the SLEDAI. The most striking correlation (P < 0.001, r = 0.55) was found with the formyl peptide receptor-like 1 protein that mediates chemotactic activities of defensins. Therefore, while the IFN signature confirms the central role of this cytokine in SLE, microarray analysis of blood cells reveals that immature granulocytes may be involved in SLE pathogenesis

    Multiplex immunofluorescence-guided laser capture microdissection for spatial transcriptomics of metastatic melanoma tissues.

    Get PDF
    We describe a pipeline for optimized and streamlined multiplexed immunofluorescence-guided laser capture microdissection allowing the harvest of individual cells based on their phenotype and tissue localization for transcriptomic analysis with next-generation RNA sequencing. Here, we analyze transcriptomes of CD3+ T cells, CD14+ monocytes/macrophages, and melanoma cells in non-dissociated metastatic melanoma tissue. While this protocol is described for melanoma tissues, we successfully applied it to human tonsil, skin, and breast cancer tissues as well as mouse lung tissues. For complete details on the use and execution of this protocol, please refer to Martinek et al. (2022)

    Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    Get PDF
    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development

    High-throughput bioprinting of the nasal epithelium using patient-derived nasal epithelial cells.

    Get PDF
    Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium. 3D bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of progenitor hNECs ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4 weeks air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes, such as disease modeling, immunological studies, and drug screening
    • …
    corecore