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The past decade has seen tremendous developments in novel cancer therapies through the targeting of
tumor-cell-intrinsic pathways whose activity is linked to genetic alterations and the targeting of tumor-cell-
extrinsic factors, such as growth factors. Furthermore, immunotherapies are entering the clinic at an unprec-
edented speed after the demonstration that T cells can efficiently reject tumors and that their antitumor
activity can be enhanced with antibodies against immune-regulatory molecules (checkpoint blockade). Cur-
rent immunotherapy strategies include monoclonal antibodies against tumor cells or immune-regulatory
molecules, cell-based therapies such as adoptive transfer of ex-vivo-activated T cells and natural killer cells,
and cancer vaccines. Herein, we discuss the immunological basis for therapeutic cancer vaccines and how
the current understanding of dendritic cell and T cell biology might enable the development of next-genera-
tion curative therapies for individuals with cancer.
Introduction
Vaccination represents one of themost effectivemethods of pre-

venting disease (Finn and Edwards, 2009; Nabel, 2013; Sub-

barao et al., 2006). Preventive vaccines are designed to block

the spread of infection, and their activity correlates with the in-

duction of specific antibodies and long-livedmemory B cells (Pu-

lendran and Ahmed, 2011). Cellular immunity can also be

induced, especially with vaccines composed of attenuated mi-

crobes (Pulendran and Ahmed, 2011). On the other hand, thera-

peutic vaccines are designed to eliminate the cause of a given

disease, e.g., to eliminate cancer cells or virally infected cells

and to treat the disease. Their activity is mostly dependent on

antigen-specific CD8+ T cells that generate cytotoxic T lympho-

cytes (CTLs) to reject cancer or infected cells. Ideally, therapeu-

tic vaccines should both prime naive T cells and modulate exist-

ing memory T cells, i.e., induce a transition from nonprotective

CD8+ T cells to healthy CD8+ T cells able to yield effective

CTLs (Figure 1). Indeed, cancer is a chronic disease and, as

such, it is associated with skewed T cell memory, e.g., chroni-

cally activated CD8+ T cells that express programmed cell death

1 (PD-1) and are anergic (Freeman et al., 2006). In addition,

vaccination should lead to the generation of long-lived memory

CD8+ T cells that will act to prevent relapse (Figure 1).

The numerous clinical studies assessing therapeutic vaccina-

tion in cancer during the past two decades have helped us define

the desired properties of vaccine-elicited CD8+ T cells associ-

ated with the rejection of cancer (Appay et al., 2008). These

include (1) high T cell receptor (TCR) affinity and high T cell avidity

for peptide major histocompatibility complexes (MHCs) ex-

pressed on tumor cells (Appay et al., 2008), (2) high amounts

of granzymes and perforin (Appay et al., 2008), (3) expression

of surface molecules that allow T cell trafficking into the tumor

(e.g., CXCR3 [Mullins et al., 2004]) and persistence in the tumor

site (e.g., integrins CD103 [Le Floc’h et al., 2007] and CD49a

[Sandoval et al., 2013]), and (4) high expression of costimulatory

molecules (e.g., CD137 [Wilcox et al., 2002]) or low expression of

inhibitory molecules (e.g., cytotoxic T lymphocyte antigen 4

[CTLA-4] [Peggs et al., 2009] or PD-1 [Freeman et al., 2006]).
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The immune system components necessary for the induction

of such CD8+ T cells include (1) the presentation of antigen by

appropriate antigen-presenting cells (APCs) (Joffre et al., 2012;

Lizée et al., 2013) and (2) the generation of CD4+ T cells produc-

ing cytokines helping CD8+ T cell proliferation and differentiation,

e.g., IL-21 (Spolski and Leonard, 2008) (Figure 2).

Numerous avenues of therapeutic vaccination against cancer

are currently being pursued (Finn, 2008). Searching for the term

‘‘cancer vaccines’’ at http://www.clinicaltrials.gov yields 1,307

clinical studies (as of July 2013), 152 of which are in phase III clin-

ical trials and 591 of which are in phase II clinical trials, high-

lighting the clinical activity in the field. A common feature among

these studies, and a critical step in vaccination, is the efficient

presentation of cancer antigens to T cells (Figure 2). Because

dendritic cells (DCs) are the most efficient APCs (Banchereau

and Steinman, 1998), exploiting their diversity (in terms of both

subsets and plasticity) is likely to yield improved therapeutic vac-

cines.

DCs are an essential component of vaccination through their

capacity to capture, process, and present antigens to T cells

(Banchereau and Steinman, 1998). Although immature DCs in

peripheral tissues efficiently capture antigens (Mellman and

Steinman, 2001), antigen presentation usually results in immune

tolerance because of the lack of costimulatory molecules (Stein-

man et al., 2003; Tarbell et al., 2007). Induction of immune

tolerance occurs through various mechanisms, including T cell

deletion and expansion of regulatory T (Treg) cells (Steinman

et al., 2003; Tarbell et al., 2007). Activated (mature), antigen-

loaded DCs initiate the differentiation of antigen-specific

T cells into effector T cells that display unique functions and

cytokine profiles. DCmaturation is associatedwith awide variety

of cellular changes, including (1) decreased antigen-capture ac-

tivity, (2) increased expression of surfaceMHC class II molecules

and costimulatory molecules, (3) acquisition of chemokine re-

ceptors (e.g., CCR7), which guide their migration (Trombetta

and Mellman, 2005), and (4) the ability to secrete different cyto-

kines (e.g., interleukin-12 [IL-12]) that control T cell differentia-

tion. It is now accepted that vaccine adjuvants act by inducing
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Figure 1. Therapeutic Vaccines Act via Dendritic Cells to Generate Protective CD8+ T Cell Immunity
Therapeutic vaccines are designed to elicit cellular immunity. In this goal, they are expected to prime new T cells and induce a transition from chronically activated
nonprotective CD8+ T cells to healthy CD8+ T cells able to (1) generate CTLs that reject cancer and (2) provide long-lived memory CD8+ T cells able to rapidly
generate new effector T cells that secrete cytotoxic molecules, thereby preventing relapse. Numerous approaches to therapeutic vaccines currently being
pursued are illustrated. Their common denominator is the action via DCs for either random or specific targeting.
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DC maturation (Steinman and Banchereau, 2007). Vaccines can

also reach lymph-node-resident DCs directly through the lym-

phatics (Itano et al., 2003). Recent years brought about an

increased understanding of DC biology, the existence of distinct

DC subsets with specific functions, and a distinct molecular

mechanism that DCs use to regulate the immune response.

Hereunder, we will discuss how this progress can be harnessed

for improved vaccination against cancer.

Human DC Subsets
Human DCs in the steady state were first studied in whole blood

and skin. Three cell-surface markers characterize blood DCs:

CD303, expressed on plasmacytoid DCs (pDCs), and CD1c

and CD141, both expressed on circulating DCs (Dzionek et al.,

2000; Dzionek et al., 2001; MacDonald et al., 2002). Both CD1c+

and CD141+ DCs can produce IL-12, thereby enabling the

generation of interferon-g (IFN-g)-secreting type 1 CD4+ T (Th1)

cells and the priming of naive CD8+ T cells (Meixlsperger et al.,

2013; Schlitzer et al., 2013). Both CD1c+ and CD141+ DCs, iso-

lated from blood or tissues, are able to cross-present long

peptides of melanoma-tissue-derived antigen (MART-1) to T cell

lines (Segura et al., 2012) andacquire viral antigens anddrive anti-

viral effector CD8+ T cell responses (Yu et al., 2013). However,

they alsodisplay unique features.CD141+CD1c�DCs, the human

counterpart ofmouseCD8a+ DCs, produce very large amounts of

IFN-a upon recognition of synthetic double-strandedRNA (Meixl-

sperger et al., 2013) and, when activated with poly I:C, efficiently

cross-primeCD8+Tcells (Bachemet al., 2010;Crozat et al., 2010;

Haniffa et al., 2012; Jongbloed et al., 2010; Lauterbach et al.,

2010; Mittag et al., 2011; Poulin et al., 2010). CD1c+ DCs from

both blood and lungs are uniquely able to drive the

differentiation of CD103+CD8+mucosal T cells with high retention

capacity in the lungs (Yu et al., 2013).
Studies of human cutaneous DCs demonstrated their pheno-

typic and functional heterogeneity (Klechevsky et al., 2008;

Nestle et al., 2009; Joffre et al., 2012). In particular, Langerhans

cells (LCs) specialize in priming CD8+ T cell immunity, whereas

interstitial (dermal) CD14+ DCs promote humoral immunity (Kle-

chevsky et al., 2008). The efficiency of LCs in priming naive CD8+

T can be partially explained by their ability to produce IL-15 (Ban-

chereau et al., 2012a; Romano et al., 2012) and/or upregulate

CD70 (van der Aar et al., 2011). Interstitial DCs can either act

directly on B cells (Dubois et al., 1997) or prime CD4+ T cells to

differentiate into T follicular helper (Tfh) cells that help B cell dif-

ferentiation in germinal centers (GCs) (Crotty, 2011). They induce

the differentiation of Tfh cells through the production of IL-12

(Schmitt et al., 2013). Interstitial DCs can generate type 2 CD8+

T cells that produce low amounts of granzyme A and display

poor CTL functions, a property that can be inhibited by the block-

ing of ILT4 (Banchereau et al., 2012b). Thus, vaccines that target

interstitial DCs might raise good antibody responses but poor

CD8+ T cell immunity.

DCs express numerous nonclonal pattern-recognition rece-

ptors (PRRs), which permit sensing and transmission of danger

signals to adaptive immunity. PRRs include membrane C-type

lectins and Toll-like receptors (TLRs) and cytoplasmic NOD-

like receptors, as well as DNA and RNA sensors (Barber,

2011; Desmet and Ishii, 2012). These receptors allow DCs

to sense pathogens, apoptotic and necrotic cells, and stressed

cell products, e.g., extruded DNA (Caielli et al., 2012). Herein,

we will only discuss a few examples of these recognition

mechanisms to illustrate how these DC properties can be har-

nessed for the generation of more efficient cancer vaccines.

Interested readers can find more in-depth discussion in recent

reviews (Coffman et al., 2010; Desmet and Ishii, 2012; Latz

et al., 2013).
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Figure 2. Dendritic Cells Play a Central Role in Vaccination
The desired properties of vaccine-elicited CD8+ T cells include (1) high TCR
affinity and high T cell avidity, (2) high levels of granzymes and perforin, (3)
trafficking into the tumor and persistence in the tumor site, and (4) high pro-
liferation potential. Naive CD8+ T cells initiate a CTL differentiation program
upon encounter with DCs presenting tumor-derived peptides via MHC class I.
This is supported by costimulation mediated by CD80, CD70, and 4-1BB and
by DC-derived cytokines such as IL-15. XCR1 chemokine secreted by DCs
facilitates the interaction with naive CD8+ T cells. TGFb expressed by DCs is
critical for CD8+ T cells to express CD103 and acquire a mucosal phenotype.
CD8+ T cell differentiation, especially generation of memory, is dependent on
the quality of CD4+ T cell help. The latter one is partially dependent on the IL-12
secreted by DCs. CD4+ T cells producing IFN-g and/or IL-21 can help CD8+

T cell expansion and differentiation. Treg cells might play a critical role during
the selection of high-avidity CD8+ T cells. This might be ascribed to the
crosstalk between DCs and CD4+ T cells where CD4+ T cells control DC
functions. There, Treg cells can suppress DCs via IL-10 production and also
regulate the production of chemokines, thereby limiting the interactions be-
tween DCs and low-avidity T cells. CD4+ T cells can also provide DC matu-
ration signals via CD40.
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Nucleic acid detection can lead to the production of protective

type I IFN via endosomal or cytoplasmic sensors (Barber, 2011;

Desmet and Ishii, 2012; Zhang et al., 2011a; Zhang et al., 2011b).

This offers a venue for the development of potent vaccine adju-

vants generating high levels of type I IFN, such as poly I:C bind-

ing TLR3 and cytoplasmic sensors, Imiquimod binding TLR7,

and CpG oligonucleotides binding TLR9 (Coffman et al., 2010).

Some lectins harbor in their cytoplasmic regions signaling motifs

that deliver activation signals when engaged by ligands ex-

pressed on necrotic cells (Sancho and Reis e Sousa, 2013).

For example, macrophage-inducible C-type lectin detects nu-

clear ribonucleoproteins released from damaged cells (Sancho

and Reis e Sousa, 2013), whereas CLEC9A, expressed uniquely

on CD141+ DCs, detects actin exposed on necrotic cells (Ahrens

et al., 2012; Zhang et al., 2012) and thereby facilitates cross-pre-

sentation of necrotic cell antigens (Sancho et al., 2009). DCs also

express inflammasome components that regulate the release of

caspase-activation-dependent cytokines, including IL-1b, IL-18,

and high-mobility group box 1 (HMGB1) (Latz et al., 2013). In-

flammasome activation in DCs can occur through the recogni-

tion of microbial ligands, such as flagellin, or through indirect

mechanisms resulting from the phagocytosis of particles,
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including alum, uric acid, and biodegradable particles that are

currently being tested as vaccine adjuvants (Coffman et al.,

2010; Latz et al., 2013). Activation of the inflammasome also

plays a very important role in the response to cancer therapy

via so-called ‘‘immunogenic cancer cell death’’ (Kroemer et al.,

2013). There, certain types of anti-cancer chemotherapy drugs

such as anthracyclines or oxaliplatin can induce immunogenic

cancer cell death, which is characterized by the secretion of

HMGB1 from dying cells (this secretion engages TLR4 on DCs)

(Kroemer et al., 2013). This signal facilitates cancer antigen pro-

cessing and presentation by DCs to T cells (Kroemer et al., 2013).

This in turn plays an important role in boosting anti-cancer

immunity via endogenous vaccination. Indeed, the absence of

HMGB1 expression by dying tumor cells compromises DC-

dependent T cell priming by tumor-associated antigens (Yama-

zaki et al., 2013). Exploiting these unique molecular pathways

for antigen delivery and DC activation represents another way

of harnessing DCs for vaccination.

DC-Based Vaccines
DCs can be exploited for vaccination against cancer through

various means, including (1) nontargeted peptide- or protein-

and nucleic-acid-based vaccines captured by DCs in vivo, (2)

vaccines composed of antigens directly coupled to DC anti-

bodies, or (3) vaccines composed of ex-vivo-generated DCs

that are loadedwith antigens.Wewill discuss selected examples

of current therapeutic vaccination approaches to illustrate these

key concepts. All these approaches are being assessed in

ongoing clinical trials.

Nontargeted Vaccines
Vaccines composed of short 9–10 aa peptides, with or without

adjuvants, demonstrated that MHC-class-I-restricted antigen-

specific CD8+ T cell immunity can be mounted in individuals

with metastatic disease (Boon et al., 2006; Rosenberg et al.,

1998; Speiser et al., 2008). However, the clinical success was

limited (Rosenberg et al., 2005), possibly because of the lack

of CD4+ T cell help, which we now know is necessary for the gen-

eration of potent CTLs and long-lived memory CD8+ T cells

(Janssen et al., 2005; Filipazzi et al., 2012). Long synthetic pep-

tides of �25–50 aa have the advantage of potentially inducing

broad immunity with both CD8+ T cell and CD4+ T cell responses

against multiple epitopes (Quakkelaar and Melief, 2012). Vacci-

nation of 20 individuals with high-grade vulvar intraepithelial

neoplasia with a long peptide covering the two oncogenic pro-

teins E6 and E7 of high-risk human papilloma virus type 16

(HPV16) led to complete regression of all lesions and eradication

of virus in nine individuals (Kenter et al., 2009). A high ratio of vac-

cine-antigen-specific effector T cells to CD4+CD25+Foxp3+ Treg

cells was predictive of clinical benefit (Welters et al., 2010).

Vaccination of subjects suffering from recurrent ovarian cancer

with long peptides covering p53 led to the expansion of p53-spe-

cific CD4+ T cells in blood and tumors (Leffers et al., 2009). How-

ever, no impact on the clinical course of the disease was

observed (Leffers et al., 2009). The lack of clinical responses

might be explained by the domination of the immune response

to vaccine antigens by CD4+ T cells that secrete type 2 cytokines

(IL-4 and IL-5) rather than IFN-g. Indeed, type 2 CD4+ T cells

might not be protective against cancer. Durable expansion of
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p53-specific type 2 CD4+ T cells was also observed in subjects

with colorectal cancer (Speetjens et al., 2009). Combining the

long p53 peptide vaccine with IFN-a resulted in increased

expansion of antigen-specific IFN-g-secreting CD4+ T cells,

although the impact on clinical efficacy remains to be estab-

lished (Zeestraten et al., 2013). These results further illustrate

the challenges that the reprogramming of pre-existing T cell

memory represents and the need to identify vaccines that will

enable priming of a new T cell repertoire.

With the advances of proteomics, vaccines can now be pre-

pared with peptides representing antigens identified from

affected individuals’ tumors. The peptides are combined with

granulocyte-macrophage colony-stimulating factor (GM-CSF),

which can attract and activate DCs and a low dose of cyclophos-

phamide in an effort to control Treg cells. This regimen led to im-

mune responses that were associated with clinical responses

(Walter et al., 2012). Although it is difficult to assess which

component of this therapy accounted for good immune and clin-

ical efficacy, shifting from shared tumor antigens common to

many subjects to individual-specific neo-antigens might enable

the efficient activation of an available T cell repertoire against

which Treg cells might not have developed. The concept of sub-

ject-specific vaccines was initiated more than two decades ago

with idiotype vaccines in lymphoma (Kwak et al., 1992), where

tumor idiotypicF determinants were conjugated to the immune

carrier keyhole limpet hemocyanin (KLH) (Kwak et al., 1992). A

phase III trial in subjects with lymphoma showed that such a vac-

cine combined with GM-CSF can lead to significant prolongation

of disease-free survival (Schuster et al., 2011).

Peptide-protein vaccines are poorly immunogenic by them-

selves unless adjuvants are added for the generation of robust

antitumor immune responses. Many adjuvants are currently un-

der evaluation as constituents of cancer vaccines (Dubensky

and Reed, 2010). These include agonists of various TLRs,

such as TLR3 (poly I:C), TLR4 (monophosphoryl lipid A [MPL]),

TLR5 (flagellin), TLR7 (Aldara [Imiquimod]), TLR7-TLR8 (Resiqui-

mod), and TLR9 (CpG) (Dubensky and Reed, 2010). Combina-

tions of adjuvants targeting different pathways might synergize

to generate more potent immune responses because their com-

bination can activate DCs in a synergistic fashion (Coffman

et al., 2010). A promising candidate is GlaxoSmithKline’s AS15

adjuvant system, which incorporates MPL that acts via TLR4,

the saponin QS-21, and CpG oligonucleotides that act via

TLR9 (Cluff, 2010). Vaccines composed of recombinant

MAGE-A3 and AS15 elicited specific immune responses and

clinical activity in both a phase II study in subjects with meta-

static melanoma (NCT00086866) and a phase II study in sub-

jects with resected non-small-cell lung cancer (NSCLC)

(NCT00290355) (Brichard and Lejeune, 2007). Phase III trials

are currently ongoing in two settings: (1) in subjects with resect-

able regionally advanced melanoma (DERMA phase III trial,

NCT00796445) (Kirkwood, 2011, J. Clin. Oncol., abstract) and

(2) in subjects with MAGE-A3-expressing NSCLC with minimal

residual disease after surgery (NCT00480025). Clearly, a better

understanding of DC biology will provide a fertile ground for dis-

covery of novel adjuvants.

DCs are also engaged in response to complex vaccine prepa-

rations, such as GVAX tumor-cell-based vaccines, for which

cancer cells are genetically modified to express GM-CSF, which
attracts and activates DCs (Le et al., 2010). Such GVAX vaccines

have shown some immune and clinical activity in pancreatic can-

cer (Thomas et al., 2004; Lutz et al., 2011) and other types of

solid tumors (Dranoff, 2002). Another vaccine platform is based

on recombinant Listeria monocytogenes (Lm), an intracellular

bacterium that targets DCs in vivo and utilizes both class I and

II antigen-processing pathways (Brockstedt et al., 2004; Le

et al., 2012). The live mutant Lm-based vaccine that expresses

mesothelin elicits mesothelin-specific T cells in mice and hu-

mans (Le et al., 2012). Engineered viruses can ferry selected an-

tigens and costimulation cassettes (Larocca and Schlom, 2011).

In a randomized phase II trial with a poxvirus-based vaccine ex-

pressing prostate-specific antigen (PSA) (PROSTVAC) and TRI-

COM (CD54, CD58, and CD80), men with metastatic prostate

cancer showed an improved overall survival (8.5 months) (Kant-

off et al., 2010b). Another strategy is based on intratumoral deliv-

ery of oncolytic viruses, i.e., viruses that preferentially infect and

kill cancer cells. These can be modified to express GM-CSF to

attract DCs and lymphocytes at the lysed tumor site (Russell

et al., 2012). A phase II study of GM-CSF-oncolytic herpes virus

in individuals with stage IIIc and stage IV melanoma indicated

durable regression in both injected and noninjected lesions, sug-

gesting a systemic effect (Senzer et al., 2009). The recent data

from a randomized prospective phase III clinical trial showed tu-

mor regression lasting at least 6 months in 16% of individuals

treated with the recombinant virus. Only 2% of individuals

treated with GM-CSF in the control arm showed such a response

(OPTiM, Oncovex Pivotal Trial in Melanoma, Amgen website). A

formal analysis of the trial is expected later this year. Viral vectors

to deliver antigens to DCs, either directly by encoded genes or

indirectly via tumor lysis, is an attractive strategy because it

mimics the natural way of infection and generation of protective

immunity. However, the immunogenicity of these vectors might

prevent their efficacy upon boosting, therefore calling for

prime-boost strategies in which a second vector is used for

boosting the specific immune response. This strategy is

currently being developed in the context of HIV vaccines (both

preventive and therapeutic) and could be applied to cancer in

case of success.

Vaccination with Ex-Vivo-Generated DCs
DCs can be generated ex vivo, loaded with different forms of

antigens, activated, and injected in affected individuals (Pal-

ucka and Banchereau, 2012). Clinical studies from the past 15

years have analyzed (1) different DC vaccine preparations, (2)

different DC activators, (3) different forms of antigen prepara-

tions from short peptides to complex whole-tumor-cell hybrids,

and (4) different routes of DC injection. These studies were

initially performed as single treatments, but combination studies

are now being assessed with agents such as systemic adju-

vants, e.g., poly I:C (Aarntzen et al., 2008; Kalinski et al.,

2013; Palucka and Banchereau, 2012; Schuler, 2010). These

studies concluded that DC-based vaccines are safe and can

induce the expansion of circulating CD4+ T cells and CD8+

T cells specific to tumor antigens. Although objective clinical re-

sponses have been observed in certain affected individuals,

there is a discrepancy between the blood immune response

and the rate of clinical responses, as we will later discuss.

The clinical response takes time to build up, but remissions
Immunity 39, July 25, 2013 ª2013 Elsevier Inc. 41
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can be long lasting. The United States Food and Drug Adminis-

tration has approved the treatment of metastatic prostate can-

cer with Sipuleucel-T, a cellular product composed of enriched

blood APCs cultured with a fusion protein of prostatic acid

phosphatase (PAP) and GM-CSF. Treatment with Sipuleucel-T

resulted in a �4-month-prolonged median survival in subjects

with prostate cancer (Kantoff et al., 2010a). Another subset of

blood DCs, plasmacytoid DCs, which represent the main

source of type I IFN upon viral infection, have also been as-

sessed as the basis for cancer vaccines (Liu, 2005; Tel et al.,

2013). Some metastatic-melanoma-affected individuals, who

were vaccinated with activated pDCs loaded with tumor-anti-

gen peptides, showed antigen-specific CD4+ and CD8+ T cell

responses (Tel et al., 2013).

Although considerable progresses have been made over the

years, additional studies are required to fully reveal the potential

immunotherapeutic impact of ex-vivo-generated DCs. Most

studies have been performed in late-stage subjects who display

strong immunosuppression mechanisms, e.g., Treg cells that

counteract the induction of effective immunity to vaccine

antigens. Nevertheless, there are two ongoing phase III trials as-

sessing in comparative studies the clinical efficacy of monocyte-

derived ex-vivo-generated DC vaccines. One trial is testing a DC

vaccine in individuals with a newly diagnosed brain tumor (glio-

blastoma) after surgery as an add-on to the standard of care,

which combines radiation and chemotherapy (NCT00045968;

Northwest Therapeutics). The DCs are loaded with autologous

tumor lysate. The second trial is testing a DC vaccine in subjects

with advanced kidney cancer (renal carcinoma) as an add-on to

targeted therapy with Sunitinib, a receptor tyrosine kinase inhib-

itor (NCT01582672; ADAPT trial, Argos Therapeutics). The DCs

are loaded with autologous tumor RNA. The three common fea-

tures of these two trials are (1) the vaccination of subjects with

resected tumors and thus lower tumor burden, (2) vaccination

in combination with other therapy, and (3) loading DCs with

autologous tumor preparations. Time will show whether the

promising phase II data observed with these vaccines will be

confirmed in phase III.

In Vivo DC Targeting
Pioneering studies from Ralph Steinman and Michel Nussenz-

weig demonstrated the principle of targeting antigens to DCs

in vivo through the coupling of antigens to antibodies specific

to DC surface receptors such as DEC205 or DCIR (Bonifaz

et al., 2002; Hawiger et al., 2001; Soares et al., 2007). Impor-

tantly, in the absence of adjuvants, targeting antigens to

DEC205+ DCs in vivo induces antigen-specific tolerance (Ha-

wiger et al., 2001), which can be used as treatment against auto-

immune diseases such as type 1 diabetes (Steinman, 2012).

Administration of these complex vaccines with DC activators

such as TLR3, TLR7-8, or CD40 agonists enables the maturation

of DCs and thus the establishment of immunity rather than toler-

ance (Steinman, 2012). The induced immunity was shown to be

protective in a number of diseases, including various infections

(e.g., malaria and HIV) and cancer (Steinman, 2012; Tacken

and Figdor, 2011). DC-targeting-based vaccination studies in

nonhuman primates demonstrated robust T cell immunity in a

prime-boost design with HIV gag-DEC205-targeting vaccine

(Flynn et al., 2011).
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Currently, numerous in vitro and in vivo studies in humans and

mice are focused on developing DC-targeting vaccines. For

example, targeting antigens through the DC surface lectins

DCIR (Klechevsky et al., 2010; Meyer-Wentrup et al., 2009),

DC-SIGN (Dakappagari et al., 2006), dectin 1 (Ni et al., 2010),

CLEC9A (Sancho et al., 2008), and Langerin (Flacher et al.,

2009) results in humoral and cellular responses, including those

of both CD4+ and CD8+ T cells. As observed in the original

studies with DEC205, the presence or absence of adjuvants

has a profound impact on immune responses. Thus, in the

absence of adjuvants, injection of antigens coupled to anti-

bodies against CLEC9A results in strong antibody responses,

which are linked to the generation of Tfh cells (Caminschi

et al., 2012). It also results in priming of Treg cell immunity(Joffre

et al., 2010), but not CD8+ T cell immunity, despite the capture

and the cross-presentation of targeted antigens by CD8a+ DCs

(Sancho et al., 2008). This can be skewed by the addition of ad-

juvants, e.g., poly I:C, at which point targeting of antigen to DCs

via CLEC9A results in potent and robust antitumor CD4+ and

CD8+ T cell immunity (Sancho et al., 2008; Joffre et al., 2010).

In mice, in vivo studies comparing immunogenicity of HIV anti-

gens linked with antibodies to Langerin (CD207), DEC205

(CD205), and CLEC9A receptors, along with CD40 antibody, to

induce DC activation resulted in comparable levels of gag-spe-

cific Th1 and CD8+ T cells (Idoyaga et al., 2011). These target

molecules are expressed by CD8a+ DCs, and the responses

were more robust than those obtained by gag targeting to

CD8a� DCs via DCIR (Idoyaga et al., 2011). Thus, when the

appropriate DC subset is targeted with a vaccine antigen with

appropriate adjuvants, several different receptors expressed

by that subset are able to initiate T cell immunity.

However, different DC receptors can deliver different signals

to the same DC, leading to distinct types of immune responses.

For example, targeting antigens to DC-ASGPR in the absence

of adjuvants favors the generation of antigen-specific IL-10-

secreting CD4+ T cells with regulatory properties both in vitro

in humans and in vivo in nonhuman primates. Targeting the

same DC population with antibodies to LOX-1 results in the

generation of antigen-specific IFN-g-secreting CD4+ T cells

(Li et al., 2012). Furthermore, targeting different human DC

receptors revealed the importance of antigen internalization

into either early or late endosomes (Chatterjee et al., 2012).

Thus, in human BDCA1+ and monocyte-derived DCs, anti-

bodies to CD40 and mannose receptor targeted antigens to

early endosomes, whereas antibodies to DEC205 targeted

antigens primarily to late compartments. CD40, the receptor

that was least efficient at internalization, turns out to be the

most efficient at cross-presentation because it promotes

limited intraendosomal degradation (Chatterjee et al., 2012).

Similarly, the targeting of different DC receptors generates

quantitatively and qualitatively different T cell responses in vivo

in mice (Dudziak et al., 2007; Soares et al., 2007). There, unlike

CD8a+ DCs, which express DEC205, CD8a� DCs, which ex-

press 33D1 antigen, are specialized for presentation of targeted

antigen on MHC class II. This difference in antigen processing

was shown to be intrinsic to the DC subsets and associated

with increased expression of proteins involved in MHC pro-

cessing (Dudziak et al., 2007). Thus, it will be essential to refine

the understanding of DC biology to guide the processing of
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targeted antigen and subsequent presentation resulting in

CD8+ T cell immunity.

CD8+ T Cell Immunity
Therapeutic vaccination aims at expanding high-avidity CD8+

T cells that can differentiate into CTLs able to kill cancer cells

and can generate long-lived memory CD8+T cells. This could

be accomplished through either the priming of naive T cells or

the reprogramming of memory T cells that differentiate earlier

in an environment not conducive to the generation of potent

cytotoxic T cells (Figure 1). Naive CD8+ T cells differentiate into

CTLs in lymphoid organs upon encounter with DCs presenting

tumor-derived peptides (Bousso and Robey, 2003) (Figure 2) in

the context of costimulation through CD80, CD70, and 4-1BB

(Shuford et al., 1997), as well as DC-derived cytokines such as

IL-12 and IL-15 (Araki et al., 2010; Waldmann, 2006; Zhang

and Bevan, 2011). The priming of the new repertoire of T cells

might be critical for clinical success. Studies with adoptive

T cell transfer showed that effector cells derived from naive

CD8+ T cells expressed higher CD27 and retained longer telo-

meres, suggesting that these cells have a greater proliferative

potential (Hinrichs et al., 2011; Klebanoff et al., 2012).

Circulating memory CD8+ T cells include both central memory

and effector cells that circulate between secondary lymphoid or-

gans and peripheral tissues. A third category, i.e., tissue-resi-

dent memory T cells, has been recently identified (Jiang et al.,

2012;Mueller et al., 2013) and shown to be superior to circulating

memory T cells at providing rapid long-term protection against

reinfection (Gebhardt et al., 2009; Jiang et al., 2012). CD103

(aEb7) integrin allows peripheral CD8+ T cell retention in epithelial

compartments (Sheridan and Lefrançois, 2011). In the context of

cancer, the expression of CD103 by CTLs facilitates their adher-

ence to cancer cells expressing E-cadherin, eventually leading to

tumor cell lysis and rejection (Le Floc’h et al., 2007). Indeed, for

mucosal cancer vaccines, the homing to and retention of CD8+

T cells in the mucosa are critical for efficacy (Sandoval et al.,

2013). In this context, the growth of orthotopic head and neck

or lung cancers can be inhibited by a cancer vaccine provided

that it is administered by the intranasal mucosal route, but not

the intramuscular route (Sandoval et al., 2013). This is explained

by the induction through intranasal vaccination of mucosal CD8+

T cells expressing themucosal integrin CD49a, the expression of

which is essential for the efficacy of cancer vaccines (Sandoval

et al., 2013). The critical role of tissue DCs in imprinting the traf-

ficking patterns of elicited T cells explains the critical role of the

route of immunization (Mullins et al., 2003; Sheasley-O’Neill

et al., 2007) (Mora et al., 2003). The current challenge is to find

out how to control T cell differentiation and trafficking in affected

individuals.

Designing Tomorrow’s Therapeutic Cancer Vaccines
The challenge for next-generation vaccines is to resolve the

discrepancy between the immune and clinical efficacymeasured

by the rate of cancer rejection. We will summarize herein the

three key aspects that when combined can bring the resolution

to this challenge: (1) the quality of vaccine-elicited CD8+ T cell

immunity, (2) the quality of vaccine-elicited CD4+ T cells, and

(3) the barriers that vaccine-elicited CD8+ T cells must confront

to access and reject cancer.
As discussed at the beginning of this review, studies in adop-

tive T cell transfer and cancer vaccines yielded a better under-

standing of what constitutes a potent antitumor CD8+ T cell

immunity. Thus, next-generation DC vaccines need to be based

on those DC subsets that are best equipped to elicit CD8+ T cells

that fulfill these criteria. For example, targeting cancer antigens

to CD141+ DCs would allow the generation of highly potent

CTLs. On the other hand, targeting the antigen to CD1c+ DCs

would allow the expansion of CD103+CD8+ T memory T cells

able to reside in the tissue.

CD4+ T cells regulate CD8+ T cell immunity in both the priming

and the effector phases. For example, Treg cells can inhibit the

effector functions of CD8+ T cells, thereby preventing tumor

rejection (Tanchot et al., 2012). However, Treg cells also play a

critical role during the priming by promoting the selection of

high-avidity CD8+ T cells (Pace et al., 2012). Although they

mostly help tumor rejection, Th1 cells might contribute to tumor

escape via secretion of IFN-g that triggers expression of PDL-1

in tissues, thus providing an off signal to effector CD8+ T cells

(Sharpe et al., 2007). Th17 cells (Dong, 2008) exert either protu-

mor or antitumor activity depending on the tissue environment in

which they reside (reviewed inWei et al., 2012). Indeed, IL-17 can

synergize with IFN-g to induce tumor cells to secrete CXCL9 and

CXCL10, which attract cytotoxic CD8+ T cells (Wei et al., 2012).

Thus, it will now be critically important to unravel molecular fac-

tors governing CD4+ T cell programming and differentiation and

DCmolecules that can control such factors. Again, the functional

specialization among human DC subsets can be harnessed

here. Indeed, as we discussed above, CD14+ DCs are able to

prime Tfh. Meanwhile, LCs prime Th2 cells (Klechevsky et al.,

2008), and CD1c+ DCs, but not CD141+ DCs, are molecularly

equipped to generate Th17 responses in humans (Schlitzer

et al., 2013). This knowledge can be applied to the design of

next-generation vaccines for directing the differentiation of anti-

gen-specific CD4+ T cells to a desired phenotype and function.

Last but not least, once elicited, CD8+ T cells must confront

numerous barriers, including (1) intrinsic regulators, such as

CD28-CTLA-4, PD1-PDL1, and ILTs (Pardoll, 2012), and

extrinsic regulators, such as Treg cells (Fehérvari and Sakaguchi,

2004) or myeloid-derived suppressor cells (MDSCs) (Gabrilovich

and Nagaraj, 2009); (2) a corrupted tumormicroenvironment with

protumor inflammation (Coussens et al., 2013; Klebanoff et al.,

2011); (3) antigen loss and immune evasion of tumor targets (Kle-

banoff et al., 2011); and (4) tissue-specific alterations, such as

fatty cells in breast cancer or desmofibrosis in pancreatic cancer

stroma (Figure 3). Defining strategies for bypassing these obsta-

cles is the object of intense studies to improve the clinical effi-

cacy of vaccination via DCs. A logical approach to addressing

these issues is the combination of DC vaccine candidates and

agents that target different pathways. For example, checkpoint

inhibitors such as antagonists to CTLA-4 or PD-1 might offset in-

hibitor signals (Figure 3) (see review by Chen andMellman, 2013,

in this issue of Immunity). The combination of GVAX and CTLA4

antibody (Ipilimumab) has proven to be safe (van den Eertwegh

et al., 2012), and preclinical models show increased effector

CD8+ T cells and enhanced tumor-antigen-directed CTL function

(Wada et al., 2013).

We foresee tomorrow’s vaccines as based on DC antibodies,

which, thanks to progresses in antibody engineering, can be
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T-cell-intrinsic regulators
-CTLA-4
-PD-1
-LAG-3
-TIM-3
-2B4

T-cell-extrinsic regulators
-suppressor cells (Treg cell, MDSC, macrophage)
-tumor-derived suppressive soluble factors (IL-10, TGF-β, IL-13)
-tumor-derived suppressive surface factors (B7 family, IDO, ILT, HLA-E)

Access to tumor, tumor site
-loss of tumor antigen
-loss of MHC class I 
-lack of chemokines
-lack of adhesion molecules
-lack of tumor vascularization

Figure 3. The Barriers for CD8+ T-Cell-Mediated Tumor Rejection
The next-generation vaccines must confront and address numerous barriers
that CD8+ T cells face, including (1) T cell access to the tumor site, (2) T-cell-
intrinsic regulators, e.g., CD28-CTLA-4 and PD1-PDL1, and (3) T-cell-extrinsic
regulators such as suppressor cells (Treg cells, MDSCs, or protumor macro-
phages), tumor-secreted suppressive factors (including IL-10), and suppres-
sive surface molecules (including coinhibitory molecules from the B7 family).
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made into polyvalent vaccines targeting distinct yet specific DC

subsets to trigger an ideal composite anti-cancer immune

response. Such vaccines will also carry DC activators and immu-

nomodulatory molecules to neutralize inhibitory signals, e.g.,

anti-PDL-1. This will keep us busy for a while.
Conclusions
We have come a long way since the first clinical trial with ex vivo

DCs was launched in 1996 (Hsu et al., 1996) with regard to our

understanding of the main problem: what is needed to elicit ther-

apeutic immunity when cancer escapes the natural barrier of

protective immunity. The considerable progress made in the un-

derstanding of the biology of DCs and effector and Treg cells

has opened avenues for the development of new vaccine strate-

gies. Progresses in ‘‘omics’’ will enable linking genetic alter-

ations with the type of immune response. Novel protocols will

be tailored to the individual-specific mutations (Schreiber

et al., 2011) and immune alterations the affected individuals

display. Thus, there has never been a more exciting time for

working on cancer vaccines.
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