743 research outputs found
Two-dimensional projections of an hypercube
We present a method to project a hypercube of arbitrary dimension on the
plane, in such a way as to preserve, as well as possible, the distribution of
distances between vertices. The method relies on a Montecarlo optimization
procedure that minimizes the squared difference between distances in the plane
and in the hypercube, appropriately weighted. The plane projections provide a
convenient way of visualization for dynamical processes taking place on the
hypercube.Comment: 4 pages, 3 figures, Revtex
Interpreting complex fluvial channel and barform architecture: Carboniferous Central Pennine Province, northern England
The Bashkirian Lower Brimham Grit of North Yorkshire, England, is a fluvio-deltaic sandstone succession that crops out as a complex series of pinnacles, the three-dimensional arrangement of which allows high-resolution architectural analysis of genetically-related lithofacies assemblages. Combined analysis of sedimentary graphic log profiles, architectural panels and palaeocurrent data have enabled three-dimensional geometrical relationships to be established for a suite of architectural elements so as to develop a comprehensive depositional model. Small-scale observations of facies have been related to larger-scale architectural elements to facilitate interpretation of the palaeoenvironment of deposition to a level of detail that has rarely been attempted previously, thereby allowing interpretation of formative processes. Detailed architectural panels form the basis of a semi-quantitative technique for recording the variety and complexity of the sedimentary lithofacies present, their association within recognizable architectural elements and, thus, the inferred spatio-temporal relationship of neighbouring elements. Fluvial channel-fill elements bounded by erosional surfaces are characterized internally by a hierarchy of sets and cosets with subtly varying compositions, textures and structures. Simple, cross-bedded sets represent in-channel migration of isolated mesoforms (dunes); cosets of both trough and planar-tabular cross-bedded facies represent lateral-accreting and downstream-accreting macroforms (bars) characterized by highly variable, yet predictable, patterns of palaeocurrent indicators. Relationships between sandstone-dominated strata bounded by third-order and fifth-order surfaces, which represent in-channel bar deposits and incised channel bases respectively, chronicle the origin of the preserved succession in response to autocyclic barform development and abandonment, major episodes of incision probably influenced by episodic tectonic subsidence, differential tilting and fluvial incision associated with slip on the nearby North Craven Fault system. Overall, the succession represents the preserved product of an upper-delta plain system that was traversed by a migratory fluvial braid-belt system comprising a poorly-confined network of fluvial channels developed between major sandy barforms that evolved via combined lateral-accretion and downstream-accretion
Glassy dynamics near zero temperature
We numerically study finite-dimensional spin glasses at low and zero
temperature, finding evidences for (i) strong time/space heterogeneities, (ii)
spontaneous time scale separation and (iii) power law distributions of flipping
times. Using zero temperature dynamics we study blocking, clustering and
persistence phenomena
Continuum theory of vacancy-mediated diffusion
We present and solve a continuum theory of vacancy-mediated diffusion (as
evidenced, for example, in the vacancy driven motion of tracers in crystals).
Results are obtained for all spatial dimensions, and reveal the strongly
non-gaussian nature of the tracer fluctuations. In integer dimensions, our
results are in complete agreement with those from previous exact lattice
calculations. We also extend our model to describe the vacancy-driven
fluctuations of a slaved flux line.Comment: 25 Latex pages, subm. to Physical Review
Lower Critical Dimension of Ising Spin Glasses
Exact ground states of two-dimensional Ising spin glasses with Gaussian and
bimodal (+- J) distributions of the disorder are calculated using a
``matching'' algorithm, which allows large system sizes of up to N=480^2 spins
to be investigated. We study domain walls induced by two rather different types
of boundary-condition changes, and, in each case, analyze the system-size
dependence of an appropriately defined ``defect energy'', which we denote by
DE. For Gaussian disorder, we find a power-law behavior DE ~ L^\theta, with
\theta=-0.266(2) and \theta=-0.282(2) for the two types of boundary condition
changes. These results are in reasonable agreement with each other, allowing
for small systematic effects. They also agree well with earlier work on smaller
sizes. The negative value indicates that two dimensions is below the lower
critical dimension d_c. For the +-J model, we obtain a different result, namely
the domain-wall energy saturates at a nonzero value for L\to \infty, so \theta
= 0, indicating that the lower critical dimension for the +-J model exactly
d_c=2.Comment: 4 pages, 4 figures, 1 table, revte
Suppression of Quantum Phase Interference in Molecular Magnets Fe₈ with Dipolar-Dipolar Interaction
Renormalized tunnel splitting with a finite distribution in the biaxial spin
model for molecular magnets is obtained by taking into account the dipolar
interaction of enviromental spins. Oscillation of the resonant tunnel splitting
with a transverse magnetic field along the hard axis is smeared by the finite
distribution which subsequently affects the quantum steps of hysteresis curve
evaluated in terms of the modified Landau-Zener model of spin flipping induced
by the sweeping field. We conclude that the dipolar-dipolar interaction drives
decoherence of quantum tunnelling in molcular magnets Fe₈, which explains
why the quenching points of tunnel spliting between odd and even resonant
tunnelling predcited theoretically were not observed experimentally.Comment: 5 pages including 3 figure and 1 table. To appear in Physical Review
Specific refolding pathway of viscumin A chain in membrane-like medium reveals a possible mechanism of toxin entry into cell
How is a water-soluble globular protein able to spontaneously cross a cellular membrane? It is commonly accepted that it undergoes significant structural rearrangements on the lipid-water interface, thus acquiring membrane binding and penetration ability. In this study molecular dynamics (MD) simulations have been used to explore large-scale conformational changes of the globular viscumin A chain in a complex environment - comprising urea and chloroform/methanol (CHCl /MeOH) mixture. Being well-packed in aqueous solution, viscumin A undergoes global structural rearrangements in both organic media. In urea, the protein is "swelling" and gradually loses its long-distance contacts, thus resembling the "molten globule" state. In CHCl /MeOH, viscumin A is in effect turned "inside out". This is accompanied with strengthening of the secondary structure and surface exposure of hydrophobic epitopes originally buried inside the globule. Resulting solvent-adapted models were further subjected to Monte Carlo simulations with an implicit hydrophobic slab membrane. In contrast to only a few point surface contacts in water and two short regions with weak protein-lipid interactions in urea, MD-derived structures in CHCl /MeOH reveal multiple determinants of membrane interaction. Consequently it is now possible to propose a specific pathway for the structural adaptation of viscumin A with respect to the cell membrane - a probable first step of its translocation into cytoplasmic targets
No spin-glass transition in the "mobile-bond" model
The recently introduced ``mobile-bond'' model for two-dimensional spin
glasses is studied. The model is characterized by an annealing temperature T_q.
On the basis of Monte Carlo simulations of small systems it has been claimed
that this model exhibits a non-trivial spin-glass transition at finite
temperature for small values of T_q.
Here the model is studied by means of exact ground-state calculations of
large systems up to N=256^2. The scaling of domain-wall energies is
investigated as a function of the system size. For small values T_q<0.95 the
system behaves like a (gauge-transformed) ferromagnet having a small fraction
of frustrated plaquettes. For T_q>=0.95 the system behaves like the standard
two-dimensional +-J spin-glass, i.e. it does NOT exhibit a phase transition at
T>0.Comment: 4 pages, 5 figures, RevTe
Library Cultures of Data Curation: Adventures in Astronomy
University libraries are partnering with disciplinary data producers to provide long-term digital curation of research datasets. Managing dataset producer expectations and guiding future development of library services requires understanding the decisions libraries make about curatorial activities, why they make these decisions, and the effects on future data reuse. We present a study, comprising interviews (n=43) and ethnographic observation, of two university libraries who partnered with the Sloan Digital Sky Survey (SDSS) collaboration to curate a significant astronomy dataset. The two libraries made different choices of the materials to curate and associated services, which resulted in different reuse possibilities. Each of the libraries offered partial solutions to the SDSS leaders’ objectives. The libraries’ approaches to curation diverged due to contextual factors, notably the extant infrastructure at their disposal (including technical infrastructure, staff expertise, values and internal culture, and organizational structure). The Data Transfer Process case offers lessons in understanding how libraries choose curation paths and how these choices influence possibilities for data reuse. Outcomes may not match data producers’ initial expectations but may create opportunities for reusing data in unexpected and beneficial ways
Ultra-Slow Vacancy-Mediated Tracer Diffusion in Two Dimensions: The Einstein Relation Verified
We study the dynamics of a charged tracer particle (TP) on a two-dimensional
lattice all sites of which except one (a vacancy) are filled with identical
neutral, hard-core particles. The particles move randomly by exchanging their
positions with the vacancy, subject to the hard-core exclusion. In case when
the charged TP experiences a bias due to external electric field ,
(which favors its jumps in the preferential direction), we determine exactly
the limiting probability distribution of the TP position in terms of
appropriate scaling variables and the leading large-N ( being the discrete
time) behavior of the TP mean displacement ; the latter is
shown to obey an anomalous, logarithmic law . On comparing our results with earlier predictions by Brummelhuis
and Hilhorst (J. Stat. Phys. {\bf 53}, 249 (1988)) for the TP diffusivity
in the unbiased case, we infer that the Einstein relation
between the TP diffusivity and the mobility holds in the leading in order, despite
the fact that both and are not constant but vanish as . We also generalize our approach to the situation with very small but
finite vacancy concentration , in which case we find a ballistic-type law
. We demonstrate that here,
again, both and , calculated in the linear in
approximation, do obey the Einstein relation.Comment: 25 pages, one figure, TeX, submitted to J. Stat. Phy
- …