10 research outputs found

    Extended Longevity of Reproductives Appears to be Common in Fukomys Mole-Rats (Rodentia, Bathyergidae)

    Get PDF
    African mole-rats (Bathyergidae, Rodentia) contain several social, cooperatively breeding species with low extrinsic mortality and unusually high longevity. All social bathyergids live in multigenerational families where reproduction is skewed towards a few breeding individuals. Most of their offspring remain as reproductively inactive “helpers” in their natal families, often for several years. This “reproductive subdivision” of mole-rat societies might be of interest for ageing research, as in at least one social bathyergid (Ansell's mole-rats Fukomys anselli), breeders have been shown to age significantly slower than non-breeders. These animals thus provide excellent conditions for studying the epigenetics of senescence by comparing divergent longevities within the same genotypes without the inescapable short-comings of inter-species comparisons. It has been claimed that many if not all social mole-rat species may have evolved similar ageing patterns, too. However, this remains unclear on account of the scarcity of reliable datasets on the subject. We therefore analyzed a 20-year breeding record of Giant mole-rats Fukomys mechowii, another social bathyergid species. We found that breeders indeed lived significantly longer than helpers (ca. 1.5–2.2fold depending on the sex), irrespective of social rank or other potentially confounding factors. Considering the phylogenetic positions of F. mechowii and F. anselli and unpublished data on a third Fukomys-species (F. damarensis) showing essentially the same pattern, it seems probable that the reversal of the classic trade-off between somatic maintenance and sexual reproduction is characteristic of the whole genus and hence of the vast majority of social mole-rats

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Intra-sexual selection in cooperative mammals and birds: why are females not bigger and better armed?

    No full text
    In cooperatively breeding mammals and birds, intra-sexual reproductive competition among females may often render variance in reproductive success higher among females than males, leading to the prediction that intra-sexual selection in such species may have yielded the differential exaggeration of competitive traits among females. However, evidence to date suggests that female-biased reproductive variance in such species is rarely accompanied by female-biased sexual dimorphisms. We illustrate the problem with data from wild Damaraland mole-rat, Fukomys damarensis, societies: the variance in lifetime reproductive success among females appears to be higher than that among males, yet males grow faster, are much heavier as adults and sport larger skulls and incisors (the weapons used for fighting) for their body lengths than females, suggesting that intra-sexual selection has nevertheless acted more strongly on the competitive traits of males. We then consider potentially general mechanisms that could explain these disparities by tempering the relative intensity of selection for competitive trait exaggeration among females in cooperative breeders. Key among these may be interactions with kin selection that could nevertheless render the variance in inclusive fitness lower among females than males, and fundamental aspects of the reproductive biology of females that may leave reproductive conflict among females more readily resolved without overt physical contests.National Research Foundation, the University of Pretoria (NCB), the Association for the Study of Animal Behaviour (AY), a BBSRC David Phillips research fellowship and NERC and Magdalene College, Cambridge research fellowships (AY).http://rstb.royalsocietypublishing.orghb201
    corecore