13 research outputs found

    The footprint of continental-scale ocean currents on the biogeography of seaweeds

    Get PDF
    Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales.Thomas Wernberg, Mads S. Thomsen, Sean D. Connell, Bayden D. Russell, Jonathan M. Waters, Giuseppe C. Zuccarello, Gerald T. Kraft, Craig Sanderson, John A. West, Carlos F. D. Gurge

    Genetic diversity and kelp forest vulnerability to climatic stress

    No full text
    © 2018 The Author(s). Genetic diversity confers adaptive capacity to populations under changing conditions but its role in mediating impacts of climate change remains unresolved for most ecosystems. This lack of knowledge is particularly acute for foundation species, where impacts may cascade throughout entire ecosystems. We combined population genetics with eco-physiological and ecological field experiments to explore relationships among latitudinal patterns in genetic diversity, physiology and resilience of a kelp ecosystem to climate stress. A subsequent 'natural experiment' illustrated the possible influence of latitudinal patterns of genetic diversity on ecosystem vulnerability to an extreme climatic perturbation (marine heatwave). There were strong relationships between physiological versatility, ecological resilience and genetic diversity of kelp forests across latitudes, and genetic diversity consistently outperformed other explanatory variables in contributing to the response of kelp forests to the marine heatwave. Population performance and vulnerability to a severe climatic event were thus strongly related to latitudinal patterns in genetic diversity, with the heatwave extirpating forests with low genetic diversity. Where foundation species control ecological structure and function, impacts of climatic stress can cascade through the ecosystem and, consequently, genetic diversity could contribute to ecosystem vulnerability to climate change

    The role of chemical antifouling defence in the invasion success of Sargassum muticum: A comparison of native and invasive brown algae.

    No full text
    Competition and fouling defence are important traits that may facilitate invasions by non-indigenous species. The 'novel weapons hypothesis' (NWH) predicts that the invasive success of exotic species is closely linked to the possession of chemical defence compounds that the recipient community in the new range is not adapted to. In order to assess whether chemical defence traits contribute to invasion success, anti-bacterial, anti-quorum sensing, anti-diatom, anti-larval and anti-algal properties were investigated for the following algae: a) the invasive brown alga Sargassum muticum from both, its native (Japan) and invasive (Germany) range, b) the two non- or weak invasive species Sargassum fusiforme and Sargassum horneri from Japan, and c) Fucus vesiculosus, a native brown alga from Germany. Crude and surface extracts and lipid fractions of active extracts were tested against common fouling organisms and zygotes of a dominant competing brown alga. Extracts of the native brown alga F. vesiculosus inhibited more bacterial strains (75%) than any of the Sargassum spp. (17 to 29%). However, Sargassum spp. from Japan exhibited the strongest settlement inhibition against the diatom Cylindrotheca closterium, larvae of the bryozoan Bugula neritina and zygotes of the brown alga F. vesiculosus. Overall, extracts of S. muticum from the invasive range were less active compared to those of the native range suggesting an adaptation to lower fouling pressure and competition in the new range resulting in a shift of resource allocation from costly chemical defence to reproduction and growth. Non-invasive Sargassum spp. from Japan was equally defended against fouling and competitors like S. muticum from Japan indicating a necessity to include these species in European monitoring programs. The variable antifouling activity of surface and crude extracts highlights the importance to use both for an initial screening for antifouling activity
    corecore