34 research outputs found

    Adrenal adenomatoid tumor in a patient with human immunodeficiency virus

    Get PDF
    We present the clinical course of a patient with human immunodeficiency virus and an adrenal adenomatoid tumor (AAT). We describe the clinical course and laboratory, radiographic, and microscopic findings of a patient with human immunodeficiency virus (HIV) and an adenomatoid tumor of the right adrenal gland. A review of the literature was also done via electronic searches through PubMed for articles from 1965 to 2008 that contained the following search terms, adenomatoid tumor limited to the English language only. A 22 year-old African-American male with HIV was incidentally found to have a hypermetabolic right adrenal mass. The patient underwent laparoscopic adrenalectomy and the mass had morphological and immunohistochemical features that were consistent with an AAT. A review of the medical literature reveals that almost all cases of AAT were in male patients (96%) with a mean age of 41±11 years (range=22–64) with no significant difference in laterality (right side=46%, left side=50%, unknown=4%). AAT have an average size of 4.2±3.5 cm (range=0.5–14.3 cm). Pre-operative imaging studies do not appear to be able to reliably distinguish AAT from other types of adrenocortical tumors. For reasons that require further research, AAT typically occur in male patients and may be associated with immunosuppression. AAT can be safely removed laparoscopically with no evidence of long-term recurrence even with tumor extension beyond the adrenal capsule

    Unusual Adrenal Tumors

    No full text

    Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy.

    Get PDF
    Contains fulltext : 69270.pdf (publisher's version ) (Open Access)ABSTRACT: Several conditions apparent at birth, e.g., neural tube defects (NTDs) and cardiac anomalies, are associated with polymorphisms in folate-related genes, such as the 677C --> T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene. Similar associations have been established for several constitutional chronic diseases in adulthood, such as schizophrenia, cardiovascular diseases, dementia, and even neoplasias in different organ systems. This spectrum of developmental anomalies and constitutional diseases may be linked to high-risk conceptions related to preovulatory overripeness ovopathy (PrOO). Some developmental anomalies, such as NTDs, are to a large extent prevented by supplementation of folic acid before conception, but supplementation does not seem to prevent cardiovascular disease or cognitive decline. These diverging results can be elucidated by introduction of the PrOO concept, as MTHFR polymorphisms and inherent low folate levels induce both non-optimal maturation of the oocyte and unsuccessful DNA methylation and demethylation, i.e. epigenetic mutations. The PrOO concept is testable and predicts in a random population the following: (1) female carriers of specific genetic MTHFR variants exhibit more ovulatory disturbances and inherent subfecundity traits, (2) descendents from a carrier mother, when compared with those from a wild-type mother, are more frequently conceived in PrOO high-risk conditions and, thus, (3) disadvantaged in life expectancy. If so, some MTHFR polymorphisms represent a novel, genetically determined, PrOO high-risk conception category comparable to those which are environmentally and behaviorly influenced. These high-risk conditions may cause developmental anomalies and defective epigenetic reprogramming in progeny. The interaction between genetic and environmental factors is a plausible mechanism of multifactorial inheritance
    corecore