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Abstract
Several conditions apparent at birth, e.g., neural tube defects (NTDs) and cardiac anomalies, are
associated with polymorphisms in folate-related genes, such as the 677C → T polymorphism of the
methylenetetrahydrofolate reductase (MTHFR) gene. Similar associations have been established for
several constitutional chronic diseases in adulthood, such as schizophrenia, cardiovascular diseases,
dementia, and even neoplasias in different organ systems. This spectrum of developmental
anomalies and constitutional diseases may be linked to high-risk conceptions related to
preovulatory overripeness ovopathy (PrOO). Some developmental anomalies, such as NTDs, are
to a large extent prevented by supplementation of folic acid before conception, but
supplementation does not seem to prevent cardiovascular disease or cognitive decline. These
diverging results can be elucidated by introduction of the PrOO concept, as MTHFR
polymorphisms and inherent low folate levels induce both non-optimal maturation of the oocyte
and unsuccessful DNA methylation and demethylation, i.e. epigenetic mutations. The PrOO
concept is testable and predicts in a random population the following: (1) female carriers of specific
genetic MTHFR variants exhibit more ovulatory disturbances and inherent subfecundity traits, (2)
descendents from a carrier mother, when compared with those from a wild-type mother, are more
frequently conceived in PrOO high-risk conditions and, thus, (3) disadvantaged in life expectancy.
If so, some MTHFR polymorphisms represent a novel, genetically determined, PrOO high-risk
conception category comparable to those which are environmentally and behaviorly influenced.
These high-risk conditions may cause developmental anomalies and defective epigenetic
reprogramming in progeny. The interaction between genetic and environmental factors is a
plausible mechanism of multifactorial inheritance.
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Introduction
Most theories related to the origin of adult diseases focus
on genetic causes and direct environmental effects preced-
ing disease onset by several years at most. The view that
diseases in adulthood can partly be explained by condi-
tions earlier in life or even before birth is gaining scientific
support. Previously, we proposed non-optimal oocyte rip-
ening or impaired oocyte maturation can be an important
cause of developmental anomaly and disease later in
adult life [1-4]. The broad spectrum of diseases possibly
related to suboptimal oocyte ripening strikingly appears
to correspond with diseases that have been associated
with the MTHFR 677C → T polymorphism. This genetic
variant goes hand in hand with low folate and elevated
homocysteine levels. We hypothesize that suboptimal
maturation of the oocyte is relevant in the enigmatic rela-
tion between MTHFR variants and associated diseases.

In this paper, we review current knowledge on MTHFR
polymorphisms and folate levels as they relate to develop-
mental anomalies at birth and selected constitutional dis-
ease in adulthood. We also recapitulate the ovopathy
concept and posit that the 677C → T variant and inherent
low folate levels are accompanied by low estrogenisation,
and that this condition induces preovulatory overripeness
ovopathy (PrOO). This leads to a high-risk conception
mediated by genetic factors, analogous to the environ-
mentally and behaviorally conditioned high-risk concep-
tions, and an origin ab ovo for some congenital anomalies
and constitutional diseases. Indeed, a genetic PrOO deter-
minant emerges as an explanation for the diverging pre-
ventive effects of folate in NTDs versus adult diseases. We
also discuss the relationship between low folate levels and
unsuccessful DNA methylation patterns in the context of
epigenetic mutations. Furthermore, testing strategies are
proposed to establish the causality of the relation between
MTHFR polymorphisms and PrOO conceptions in ran-
dom populations.

MTHFR-polymorphisms associated with congenital 
anomalies as well as with chronic diseases in adulthood 
and diverging benefits of folic acid supplementation
Folate is an important B vitamin that plays a pivotal role
in remethylation of homocysteine to methionine, which
is essential for DNA-synthesis, DNA-repair, and DNA-
imprinting processes [5]. Reduction of 5,10-methylenetet-
rahydrofolate into 5-methyltetrahydrofolate, the predom-
inant circulatory form of folate is catalyzed by MTHFR, the
regulating key enzyme for availability of active folate at
the expense of elevated homocysteine levels [6]. In 1995,
the most frequently occurring polymorphism in the
MTHFR gene 677C → T was identified [7]. This allele is
present in heterozygous (CT) or homozygous (TT) carrier
state in 40% and 5–15% of individuals [8], respectively,
while the specific activity of folate and the folate metabo-

lism is correspondingly reduced by up to 30% and 65%.
In the homozygous form, this reduction is associated with
a 25% increase of homocysteine levels. Thus, hyperhomo-
cysteinemia is conditioned either genetically or nutrition-
ally, but it can be alleviated by adequate folic acid intake.

It has become evident that the 677C → T variant as well as
low-folate intake by the mother contribute to increased
risks of NTDs and cardiac anomalies. The underlying
pathogenic mechanism which causes this detrimental
effect is not fully understood [9,10]. However, important
preventive effects up to 50–75% have been effectuated for
NTDs by supplementation of between 200 μg to 5 mg
folic acid daily, particularly before conception [9,11] or by
food fortification, as implemented in USA and Canada
[12]. Over the last decade, MTHFR polymorphisms and
elevated total plasma homocysteine concentrations have
also been associated with a broad range of conditions in
adulthood, albeit more modestly, e.g., with schizophre-
nia, unipolar depression, bipolar disorder [13-15], dia-
betic retinopathy[16], ovulatory infertility [17,18],
cardiovascular disease, atherosclerosis, and thromboem-
bolic events [19,20], renal failure [21], dementia, and cog-
nitive impairment [22,23]. The underlying mechanisms
in the pathogenesis of these chronic diseases remain still
more poorly understood compared to those of develop-
mental anomalies. However, the general opinion is that
the 677C → T variant exerts its influence by ambiently ele-
vated homocysteine levels, i.e. 'the homocysteine hypoth-
esis' [20]. Several large-scale clinical trials evaluating
vitamin supplementation were performed to reduce
homocysteine concentrations with the goal to reduce car-
diovascular disease and dementia, or at least to delay their
onset. However, in spite of significant reductions of
homocysteine for each nmol/L increase in serum folate,
the results remained debatable or even negative [23-26].

An additional enigma is the marginal association between
MTHFR polymorphisms and several neoplasias with
diverging incidences according to age [27,28]. A meta-
analysis of all published leukemia cases revealed that an
association with the 677C → T allele was present in adult-
hood, but this effect was lost in childhood. This was the
basis for suggesting a 'protective' role for this allele [29],
and a similar diverging finding has been mentioned for
colorectal neoplasia [30].

The pre-ovulatory overripeness ovopathy (PrOO) concept
This concept was initially derived from animal research in
the 19th and 20th century as well as observations in human
reproduction [1-4]. Meiotic progression and optimal
developmental oocyte competence in mammals occur
during highly critical periods of follicle formation and
ultimate oocyte maturation. The molecular, biochemical,
and physiological processes in the oocyte are essential for
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the pleiotropic consequences in both nuclear and cyto-
plasmic constituents. Ideal concentrations of estrogens
and optimally ripened oocytes (OptRO) are apparent dur-
ing optimal conditions for reproduction. This coincides
with optimal maternal age, adequate nutritional state,
and post-pregnancy restoration of a regulatory ovulatory
pattern, and with the seasonally-bound ovulation peaks,
guaranteeing optimal embryo quality and favourable
downstream effects on subsequent events, i.e., on life
expectancy [1-4]. In fact, adequate estrogen concentra-
tions in healthy women have been associated with achiev-
ing clinical pregnancy, intermediate levels with early
pregnancy loss, while still lower levels were associated
with non-conception cycles [31].

In contrast, abnormal estrogen concentrations cause defi-
cient oocyte maturation which is the basis of preovulatory
overripeness ovopathy (PrOO), and leads to fertilization
of non-optimally matured oocytes [1-4]. The impact of
oocyte attrition before fertilization is hypothesized to
entail disadvantageous embryo consequences, including
aneuploidy, deficient implantation, intrauterine growth
retardation, prenatal loss, and developmental anomalies
in various tissue systems. Inappropriate estrogen levels are
physiologically conditioned and coincide with transi-
tional stages of reproductive life in which the ovulatory
pattern is most variable (i.e., at the extremes of maternal
age, after very short and long pregnancy intervals, and
with the seasonally-bound restoration and inhibition, i.e.,
breakthrough and breakdown of the ovulatory patttern).
Too low and too high body mass, endocrine disruptors
such as pharmaceuticals, narcotics, and toxins may also
interact with estrogen levels and influence ovulatory pat-
terns [1-3].

Excessive dysfunctional oocyte maturation results in poor
quality oocytes and, after surpassing a certain threshold,
in disproportionately increasing numbers of pathological
conceptuses. Excess vanishing of pathological outcome
will turn into excess preterm loss, and eventually in defi-
cits of pathological births. This is called the dose-response
fallacy in reproductive studies described by Selevan and
Lemasters [32]. In our opinion, the ovopathy concept is
one possible explanation for the dose-response fallacy.

MTHFR polymorphisms and low folate levels as the 
genetic determinant for PrOO
The spectrum of developmental anomalies associated
with MTHFR polymorphisms and/or folate deficiency
appears analogous to the spectrum of anomalies related to
PrOO induced by endocrine disturbances during the tran-
sitional stages of reproductive life and/or by divergent
reproductive behavior, e.g. unusual maternal age or preg-
nancy interval [3] (see Figure 1). Low folate serum levels
in Rhesus monkeys have been associated with granulosa

cell impairment and with decreased estradiol and proges-
teron levels. Reduction of follicle growth and delayed
ovulation are markers for retardation of embryonic
growth and malformation [33]. Folate levels are also
essential for sperm maturation, as inadequate folate
intake is inversely associated with overall frequencies of
several types of aneuploid sperm in healthy men [34]. The
MTHFR CT and TT genotypes with inherent low folate sta-
tus are candidates for compromising oocyte maturation,
and may set the stage for a genetically conditioned high-
risk conception analogous to those resulting from endo-
crine disturbances induced by environmental or behavio-
ral conditions (see Figure 1.).

This genetically conditioned high-risk for PrOO explains
several unexplained phenomena related to MTHFR vari-
ants as well as to low dietary folate. Both conditions are
associated with increased fetal loss, intrauterine growth
retardation, and heart defects in female mice [35], as well
as with women experiencing fetal aneuploidy, recurrent
pregnancy loss, early and late pregnancy loss, preeclamp-
sia, preterm premature rupture of membranes, and of par-
ticular interest, congenital anomalies [36-39]. These
reproductive casualties have been related to non-opti-
mally matured oocytes and aberrant blastocyst nidation
[1-4]. The probability for embryos with TT or CT geno-
types to arrest at an early stage has been advanced as an
explanation for the 'unique distribution' of the 677CT
and 677TT genotypes in spontaneously aborted embryos,
irrespective of chromosomal integrity [40-43]. This is in
line with the dose-response fallacy being inherent to the
PrOO concept. Other findings are also in accordance with
disproportionate levels of oocyte deterioration and a dose-
response fallacy: a dose-specific reduced risk of progeny
with cleft lip with or without cleft palate(CL/P) from
mothers carrying either one or two copies of the 677C →
T variant (RRs: 0.71 and 0.38, respectively), a negative
association for children with CL/P (RRs: 1.05 and 0.74)
versus a positive one for cleft palate only (CPO; RRs: 2.06
and 1.75), and a fourfold increased risk of orofacial clefts
in mothers using folic acid [44].

The finding of MTHFR 677C → T mutations in the mother
(but not in children with congenital heart defects) [45] is
in general agreement with PrOO as a primary cause of
developmental anomalies [46]. Additionally, teratogenic
effect appears to be dose-specific in NTDs with 60% het-
erozygous and 90% homozygous mothers [9], and is also
apparent from the increasing male sex preponderance
among randomly selected newborns according to mater-
nal MTHFR wild-type, heterozygous, and homozygous
carriership: 47%, 50%, and 67% boys, respectively [47].
This sex ratio modulation offers further support for the
PrOO concept [4].
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It should be noted that periconceptional multivitamin use
including folic acid reduces the dose-response risk of
preeclampsia and ovulatory infertility [17,18]. In IVF
treatment, it results in better embryo quality (defined by
cell number), embryo fragmentation rate, or short-term
pregnancy outcomes [48]. In contrast, the disappointing
curative effect of folate supplements for constitutional dis-
eases associated with MTHFR polymorphisms [23-26] is
in line with developmental weaknesses ab ovo. In other
words, preventive measures are effective only before con-
ception but not afterward, and that threatened oocytes
may be the culprit of specific constitutional diseases
encountered long after birth.

The conjecture of a common origin ab ovo for both devel-
opmental anomalies and constitutional disease is consist-
ent with the environmental determinants related to non-
optimally maturing oocytes [1-4]. This is in particular evi-
dent by the sesonally-bound month-of-birth configura-
tions observed in NTDs and cardiac anomalies [1,3,48,49]

but equally evident for schizophrenia, eating disorders,
subfecundity, DM-1 and DM-2, and childhood leukemia
[50-54]. Analogous month-of-birth configurations were
also present in three consecutive samples of childhood
leukemia in the Netherlands [personal communication].
Interaction between MTHFR genetic determinants, nutri-
tion, and other maternal reproductive determinants
should be emphasized in these disease processes, as illus-
trated in Figure 1.

MTHFR genes, low folate and epigenetic reprogramming
As mentioned previously, adequate folate levels are a pre-
requisite not only for optimal oocyte maturation but also
for remethylation of homocysteine to methionine – the
key epigenetic contributor to gene activation and/or
reprogramming [6]. These epigenetic processes are essen-
tial to confer stability of gene expression during mamma-
lian development and necessary for correct initiation of
embryonic gene expression and early lineage develop-
ment in the embryo. Such epigenetic modulation pro-

MHTRF gene polymorphisms as well as behaviorally and/or environmentally influenced high-risk conditions cause PrOO and epigenetic DNA-alterations either independently or in combinationFigure 1
MHTRF gene polymorphisms as well as behaviorally and/or environmentally influenced high-risk conditions 
cause PrOO and epigenetic DNA-alterations either independently or in combination. This results in innate devel-
opmental defects at birth (e.g. NTDs) or in adulthood (e.g. schizophrenia).

           MTHFR polymorphisms 

        low folate and estrogen levels 

 PrOO and impaired DNA-replication         innate defects at birth and adult disease 

        low folate and estrogen levels 

 high-risk conditions (by environmental 

     or behavioral conditions) 
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foundly influences transcriptional repression, chromatin
structure, X-inactivation, and allelic imprinting and
silencing.

Incorrect DNA reprogamming results in epigenetic muta-
tion, which does not follow the classic rules of Mendelian
inheritance. Active transport of methionine happens in all
animal and human oocytes and in early preimplantation
embryos. DNA-methylation is concentrated at specific
stages when developmental potency of cells changes, i.e.,
during the final phase of oocyte maturation. In contrast,
DNA-demethylation occurs immediately after fertiliza-
tion [5,55,56]. It follows that maternal reproductive fac-
tors can affect fetal development via epigenetic
modifications of DNA [57]. Interestingly, ovarian hyper-
stimulation was the common factor in all twelve repro-
ductive histories of women who gave birth to offspring
affected with Beckwith-Wiedemann syndrome [58], and
assisted reproduction technology [55,56] and PrOO [59]
have been associated with other imprinting disorders.

The combined effect of PrOO and epigenetic mutations
evoked by MTHFR variants (and low folate levels) can
explain many developmental puzzles in animals and
humans. For example, epigenetic modifications in lambs
derived from oocytes retrieved from ewes given a vitamin
B12 and folate restricted diet during the periconceptional
period, resulted in obesity, insulin resistance, hyperten-
sion, and altered immune responses when full grown
[60]. This was especially observed in rams, itself a note-
worthy finding regarding sex ratio modulation by PrOO
[4]. Additionally, pre-conception dietary methyl supple-
ments have been shown to alter the capacity for methyla-
tion and expression of the imprinted Agouti gene and
strongly affect the phenotype and long-term health of the
young in female Agouti mice [61]. Furthermore, insults to
the oocyte appear to be responsible for aberrant epige-
netic reprogramming events at the zygote stage and even
demethylation of the paternal pronucleus in mice seems
maternally driven [62]. A number of pathologic condi-
tions have been associated with decreased global methyl-
ation, including spina bifida [63], schizophrenia [64],
and certain neoplasias [30,65,66].

MTHFR polymorphisms related to the PrOO concept: 
testing the hypothesis
MTHFR polymorphism status in females is hypothesized
to entail a genetically determined propensity to PrOO,
which may be likened to the high-risk conceptions elicited
by environmental and behavioral conditions. The variant
alleles operate either independently or in concert and may
strengthen each other. Therefore, we predict that:

1) Heterozygous and homozygous 677C → T carrier
females suffer from subfecundity traits in a dose-response

manner when compared to females with no mutation
(CC). Apart from giving birth to affected progeny, they
also experience more menstrual disorders, longer time to
achieve pregnancy, longer interpregnancy intervals, and
more pronounced reproductive seasonal variation.

2) Offspring from homozygous (and to a lesser extent
from heterozygous 677C → T carrier mothers), being
genetically more susceptible to environmental triggers
than mothers without this mutation, are more frequently
conceived in high-risk conditions characterized by ovula-
tory disturbances. Typical PrOO characteristics are
depicted in Figure 2, and include a U-shaped birth distri-
bution related to (2a) maternal age and (2b) interbirth
interval, and (2c) a disproportionate seasonally-bound
month-of-birth distribution [1-3].

3) Descendents from homozygous (and to a lesser extent
from heterozygous 677 → T carrier women) have reduced
life expectancy compared to offspring from mothers with-
out this polymorphism.

These effects may be obscured by early loss before birth as
a consequence of preterm premature rupture of mem-
branes and eclampsia associated with MTHFR polymor-
phisms [36,38] or due to untimely death, often before
diagnosis, or due to other poor outcomes related to
MTHFR polymorphisms. As this may cause spurious neg-
ative associations, as e.g., in childhood leukemia [29],
these effects are age-specific and more apparent in
younger than in older individuals, as has been demon-
strated [personal communication]. Disproportionate lev-
els of oocyte deterioration and dose-response fallacy will in
particular occur at the extremes of maternal age, birth
interval or at the seasonal transitions (Figure 2a, 2b and
2c).

In conclusion, MTHFR polymorphisms and resulting low
folate levels warrant consideration as factors inducing
non-optimally matured oocytes before conception. They
represent a novel, genetically determined, high-risk PrOO
condition comparable to the endocrine disturbances elic-
ited by environmental and behavioral conditions. Further
study of the interaction between genetic and environmen-
tal factors may indentify mechanisms of multifactorial
inheritance and explain many commonly associated enig-
mata in chronic constitutional diseases.
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The indexed birth incidence of descendents (average=100) from wild-type MTHFR gene mothers is expected to be conform that in a random population [solid line, black] during (2a) reproductive life), (2b) interbirth interval and (2c) winter and summer birth peak.Figure 2
The indexed birth incidence of descendents (average=100) from wild-type MTHFR gene mothers is expected 
to be conform that in a random population [solid line, black] during (2a) reproductive life), (2b) interbirth 
interval and (2c) winter and summer birth peak. The PrOO concept predicts disproportional increases of births from 
heterozygous [interupted line, blue] – and more excessively – from homozygous [interrupted line, red] MTHFR allele carrier 
mothers. This will occur at (2a) menarche and menopause, (2b) after parturition or long fallow period and (2c) at the onset and 
the end of the winter and summer birth peak. A dose-response fallacy may be expected at the extremes of maternal age and 
interbirth interval (2a and 2b) or at the birth troughs (2c).  
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