6 research outputs found

    Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    Get PDF
    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization

    Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate

    No full text
    Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite–whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites have experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H(+)-bearing whitlockite with implications for interpreting meteorites and the need for future sample return
    corecore