85 research outputs found

    Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7.

    Get PDF
    Sleep is found widely in the animal kingdom. Despite this, few conserved molecular pathways that govern sleep across phyla have been described. The mammalian brain-type fatty acid binding protein (Fabp7) is expressed in astrocytes, and its mRNA oscillates in tandem with the sleep-wake cycle. However, the role of FABP7 in regulating sleep remains poorly understood. We found that the missense mutation FABP7.T61M is associated with fragmented sleep in humans. This phenotype was recapitulated in mice and fruitflies bearing similar mutations: Fabp7-deficient mice and transgenic flies that express the FABP7.T61M missense mutation in astrocytes also show fragmented sleep. These results provide novel evidence for a distinct molecular pathway linking lipid-signaling cascades within astrocytes in sleep regulation among phylogenetically disparate species

    hSAGEing: An Improved SAGE-Based Software for Identification of Human Tissue-Specific or Common Tumor Markers and Suppressors

    Get PDF
    SAGE (serial analysis of gene expression) is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers.To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique “multi-pool method” that analyzes multiple pools of pair-wise case controls individually. When all the settings are in “inclusion”, the common SAGE tag sequences are mined. When one tissue type is in “inclusion” and the other types of tissues are not in “inclusion”, the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM) and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries

    Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by <it>ERBB2</it> (<it>HER-2/neu</it>) oncogene expression.</p> <p>Results</p> <p>The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of <it>ERBB2</it>-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of <it>ERBB2</it>. The relative expression balance between AS variants from 3 genes was differentially modulated by <it>ERBB2</it> in this model system.</p> <p>Conclusions</p> <p>In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by <it>ERBB2</it>-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.</p

    Large-Scale Evidence for Conservation of NMD Candidature Across Mammals

    Get PDF
    BACKGROUND: Alternatively-spliced (AS) forms can vary protein function, intracellular localization and post-translational modifications. AS coupled with mRNA nonsense-mediated decay (NMD) can also control the transcript abundance. Here, we have investigated the genome-scale conservation of alternatively-spliced NMD candidates (AS-NMD candidates), in mammals. METHODOLOGY/PRINCIPAL FINDINGS: We mapped>12 million cDNA/EST library transcripts, comprising pooled data from both older and next-generation sequencing techniques, against genomic sequences to annotate AS-NMD candidates generated by in-frame premature termination codons (PTCs), in the human, mouse, rat and cow genomes. In these genomes, we found populations of genes that harbour AS-NMD candidates, varying in number from approximately 149 to 2,051 genes. We discovered that a highly-significant proportion (27%-35%) of AS-NMD candidate genes in mouse, rat and cow, also have human orthologs targeted for NMD. Intron retention was the most abundant type of AS-NMD, ranging from 43% to 67% of genes harbouring an AS-NMD candidate. Groupings of AS-NMD candidate genes either with or without intron retentions also have highly significant AS-NMD conservation, indicating that the trend is not due primarily to conservation of intron retentions. As a subset, the AS-NMD intron retentions are distinguished from non-retained introns by higher GC content, and codon usage similar to the usage in protein-coding sequences. This indicates that most of these alternatively spliced sequences have coded for proteins in the recent evolutionary past. In general, the AS-NMD candidate genes showed a similar pattern of Gene Ontology functional category enrichments in all four species. Genes linked to nucleic-acid interaction and apoptosis, and involved in pathways linked with cancer, were the most common. Finally, we mapped the AS-NMD candidates to mass spectrometry-derived proteomics data, and gathered evidence of truncated polypeptides for at least 10% of all human AS-NMD candidate transcripts. CONCLUSIONS/SIGNIFICANCE: In summary, our analysis provides strong statistical evidence for conservation of functional AS-NMD candidature across Mammalia for a large subset of genes. However, because codon usage of AS-NMD intron retentions is similar to the usage in exons, it is difficult to de-couple conservation of AS-NMD-based regulation from conservation for protein-coding ability, for intron retentions

    Regulation of Retention of FosB Intron 4 by PTB

    Get PDF
    One effect of stressors such as chronic drug administration is that sequence within the terminal exon of the transcription factor FosB is recognized as intronic and removed by alternative splicing. This results in an open-reading-frame shift that produces a translation stop codon and ultimately a truncated protein, termed ΔFosB. In vitro splicing assays with control and mutated transcripts generated from a fosB mini-gene construct indicated a CU-rich sequence at the 3′ end of intron 4 (I4) plays an important role in regulating fosB pre-mRNA splicing due to its binding of polypyrimidine tract binding protein (PTB). PTB binding to this sequence is dependent upon phosphorylation by protein kinase A and is blocked if the CU-rich sequence is mutated to a U-rich region. When this mutated fosB minigene is expressed in HeLa cells, the splicing efficiency of its product is increased compared to wild type. Moreover, transient transfection of PTB-1 in HeLa cells decreased the splicing efficiency of a wild type fosB minigene transcript. Depletion of PTB from nuclear extracts facilitated U2AF65 binding to wild type sequence in vitro, suggesting these proteins function in a dynamic equilibrium to modulate fosB pre-mRNA alternative splicing. These results demonstrate for the first time that phosphorylated PTB promotes intron retention and thereby silences the splicing of fosB I4

    The Colorectal cancer disease-specific transcriptome may facilitate the discovery of more biologically and clinically relevant information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, there are no clinically reliable predictive markers of response to the current treatment regimens for advanced colorectal cancer. The aim of the current study was to compare and assess the power of transcriptional profiling using a generic microarray and a disease-specific transcriptome-based microarray. We also examined the biological and clinical relevance of the disease-specific transcriptome.</p> <p>Methods</p> <p>DNA microarray profiling was carried out on isogenic sensitive and 5-FU-resistant HCT116 colorectal cancer cell lines using the Affymetrix HG-U133 Plus2.0 array and the Almac Diagnostics Colorectal cancer disease specific Research tool. In addition, DNA microarray profiling was also carried out on pre-treatment metastatic colorectal cancer biopsies using the colorectal cancer disease specific Research tool. The two microarray platforms were compared based on detection of probesets and biological information.</p> <p>Results</p> <p>The results demonstrated that the disease-specific transcriptome-based microarray was able to out-perform the generic genomic-based microarray on a number of levels including detection of transcripts and pathway analysis. In addition, the disease-specific microarray contains a high percentage of antisense transcripts and further analysis demonstrated that a number of these exist in sense:antisense pairs. Comparison between cell line models and metastatic CRC patient biopsies further demonstrated that a number of the identified sense:antisense pairs were also detected in CRC patient biopsies, suggesting potential clinical relevance.</p> <p>Conclusions</p> <p>Analysis from our <it>in vitro </it>and clinical experiments has demonstrated that many transcripts exist in sense:antisense pairs including <it>IGF2BP2</it>, which may have a direct regulatory function in the context of colorectal cancer. While the functional relevance of the antisense transcripts has been established by many studies, their functional role is currently unclear; however, the numbers that have been detected by the disease-specific microarray would suggest that they may be important regulatory transcripts. This study has demonstrated the power of a disease-specific transcriptome-based approach and highlighted the potential novel biologically and clinically relevant information that is gained when using such a methodology.</p

    Cancer recurrence times from a branching process model

    Get PDF
    As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table

    The open abdomen in trauma and non-trauma patients: WSES guidelines

    Full text link
    corecore