198 research outputs found

    Integer and half-integer flux-quantum transitions in a niobium/iron-pnictide loop

    Full text link
    The recent discovery of iron-based superconductors challenges the existing paradigm of high-temperature superconductivity. Owing to their unusual multi-orbital band structure, magnetism, and electron correlation, theories propose a unique sign reversed s-wave pairing state, with the order parameter changing sign between the electron and hole Fermi pockets. However, because of the complex Fermi surface topology and material related issues, the predicted sign reversal remains unconfirmed. Here we report a novel phase-sensitive technique for probing unconventional pairing symmetry in the polycrystalline iron-pnictides. Through the observation of both integer and half-integer flux-quantum transitions in composite niobium/iron-pnictide loops, we provide the first phase-sensitive evidence of the sign change of the order parameter in NdFeAsO0.88F0.12, lending strong support for microscopic models predicting unconventional s-wave pairing symmetry. These findings have important implications on the mechanism of pnictide superconductivity, and lay the groundwork for future studies of new physics arising from the exotic order in the FeAs-based superconductors.Comment: 23 pages, including 4 figures and supplementary informatio

    Subcellular fractionation method to study endosomal trafficking of Kaposi’s sarcoma-associated herpesvirus

    Get PDF
    Background Virus entry involves multiple steps and is a highly orchestrated process on which successful infection collectively depends. Entry processes are commonly analyzed by monitoring internalized virus particles via Western blotting, polymerase chain reaction, and imaging techniques that allow scientist to track the intracellular location of the pathogen. Such studies have provided abundant direct evidence on how viruses interact with receptor molecules on the cell surface, induce cell signaling at the point of initial contact with the cell to facilitate internalization, and exploit existing endocytic mechanisms of the cell for their ultimate infectious agenda. However, there is dearth of knowledge in regards to trafficking of a virus via endosomes. Herein, we describe an optimized laboratory procedure to isolate individual organelles during different stages of endocytosis by performing subcellular fractionation. This methodology is established using Kaposi’s sarcoma-associated herpesvirus (KSHV) infection of human foreskin fibroblast (HFF) cells as a model. With KSHV and other herpesviruses alike, envelope glycoproteins have been widely reported to physically engage target cell surface receptors, such as integrins, in interactions leading to entry and subsequent infection. Results Subcellular fractionation was used to isolate early and late endosomes (EEs and LEs) by performing a series of centrifugations steps. Specifically, a centrifugation step post-homogenization was utilized to obtain the post-nuclear supernatant containing intact intracellular organelles in suspension. Successive fractionation via sucrose density gradient centrifugation was performed to isolate specific organelles including EEs and LEs. Intracellular KSHV trafficking was directly traced in the isolated endosomal fractions. Additionally, the subcellular fractionation approach demonstrates a key role for integrins in the endosomal trafficking of KSHV. The results obtained from fractionation studies corroborated those obtained by traditional imaging studies. Conclusions This study is the first of its kind to employ a sucrose flotation gradient assay to map intracellular KSHV trafficking in HFF cells. We are confident that such an approach will serve as a powerful tool to directly study intracellular trafficking of a virus, signaling events occurring on endosomal membranes, and dynamics of molecular events within endosomes that are crucial for uncoating and virus escape into the cytosol

    GSVD Comparison of Patient-Matched Normal and Tumor aCGH Profiles Reveals Global Copy-Number Alterations Predicting Glioblastoma Multiforme Survival

    Get PDF
    Despite recent large-scale profiling efforts, the best prognostic predictor of glioblastoma multiforme (GBM) remains the patient's age at diagnosis. We describe a global pattern of tumor-exclusive co-occurring copy-number alterations (CNAs) that is correlated, possibly coordinated with GBM patients' survival and response to chemotherapy. The pattern is revealed by GSVD comparison of patient-matched but probe-independent GBM and normal aCGH datasets from The Cancer Genome Atlas (TCGA). We find that, first, the GSVD, formulated as a framework for comparatively modeling two composite datasets, removes from the pattern copy-number variations (CNVs) that occur in the normal human genome (e.g., female-specific X chromosome amplification) and experimental variations (e.g., in tissue batch, genomic center, hybridization date and scanner), without a-priori knowledge of these variations. Second, the pattern includes most known GBM-associated changes in chromosome numbers and focal CNAs, as well as several previously unreported CNAs in 3% of the patients. These include the biochemically putative drug target, cell cycle-regulated serine/threonine kinase-encoding TLK2, the cyclin E1-encoding CCNE1, and the Rb-binding histone demethylase-encoding KDM5A. Third, the pattern provides a better prognostic predictor than the chromosome numbers or any one focal CNA that it identifies, suggesting that the GBM survival phenotype is an outcome of its global genotype. The pattern is independent of age, and combined with age, makes a better predictor than age alone. GSVD comparison of matched profiles of a larger set of TCGA patients, inclusive of the initial set, confirms the global pattern. GSVD classification of the GBM profiles of an independent set of patients validates the prognostic contribution of the pattern

    Moderate alcohol consumption increases insulin sensitivity and ADIPOQ expression in postmenopausal women: a randomised, crossover trial

    Get PDF
    Aims/hypothesis To determine whether 6 weeks of daily, moderate alcohol consumption increases expression of the gene encoding adiponectin (ADIPOQ) and plasma levels of the protein, and improves insulin sensitivity in postmenopausal women. Methods In a randomised, open-label, crossover trial conducted in the Netherlands, 36 apparently healthy postmenopausal women who were habitual alcohol consumers, received 250 ml white wine (~25 g alcohol/day) or 250 ml of white grape juice (control) daily during dinner for 6 weeks. Randomisation to treatment allocation occurred according to BMI. Insulin sensitivity and ADIPOQ mRNA and plasma adiponectin levels were measured at the end of both periods. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). Levels of ADIPOQ mRNA in subcutaneous adipose tissue were determined by RT-PCR. Results All subjects completed the study. Six weeks of white wine consumption reduced fasting insulin (mean¿±¿SEM 40.0¿±¿3.4 vs 46.5¿±¿3.4 pmol/l; p

    Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development

    Get PDF
    Methylation of cytosine is a DNA modification associated with gene repression. Recently, a novel cytosine modification, 5-hydroxymethylcytosine (5-hmC) has been discovered. Here we examine 5-hmC distribution during mammalian development and in cellular systems, and show that the developmental dynamics of 5-hmC are different from those of 5-methylcytosine (5-mC); in particular 5-hmC is enriched in embryonic contexts compared to adult tissues. A detectable 5-hmC signal appears in pre-implantation development starting at the zygote stage, where the paternal genome is subjected to a genome-wide hydroxylation of 5-mC, which precisely coincides with the loss of the 5-mC signal in the paternal pronucleus. Levels of 5-hmC are high in cells of the inner cell mass in blastocysts, and the modification colocalises with nestin-expressing cell populations in mouse post-implantation embryos. Compared to other adult mammalian organs, 5-hmC is strongly enriched in bone marrow and brain, wherein high 5-hmC content is a feature of both neuronal progenitors and post-mitotic neurons. We show that high levels of 5-hmC are not only present in mouse and human embryonic stem cells (ESCs) and lost during differentiation, as has been reported previously, but also reappear during the generation of induced pluripotent stem cells; thus 5-hmC enrichment correlates with a pluripotent cell state. Our findings suggest that apart from the cells of neuronal lineages, high levels of genomic 5-hmC are an epigenetic feature of embryonic cell populations and cellular pluri- and multi-lineage potency. To our knowledge, 5-hmC represents the first epigenetic modification of DNA discovered whose enrichment is so cell-type specific

    Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

    Get PDF
    Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV

    The influence of external factors on bacteriophages—review

    Get PDF
    The ability of bacteriophages to survive under unfavorable conditions is highly diversified. We summarize the influence of different external physical and chemical factors, such as temperature, acidity, and ions, on phage persistence. The relationships between a phage’s morphology and its survival abilities suggested by some authors are also discussed. A better understanding of the complex problem of phage sensitivity to external factors may be useful not only for those interested in pharmaceutical and agricultural applications of bacteriophages, but also for others working with phages

    Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Cancer Cell Models

    Get PDF
    Background: Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth under androgen-deprived and antiandrogen supplemented conditions. As model system, we used the androgen-responsive PC346C cell line and its therapy-resistant sublines: PC346DCC, PC346Flu1 and PC346Flu2. Methodology/Principal Findings: Microarray technology was used to analyze differences in gene expression between the androgen-responsive and therapy-resistant PC346 cell lines. Microarray analysis revealed 487 transcripts differentiallyexpressed between the androgen-responsive and the therapy-resistant cell lines. Most of these genes were common to all three therapy-resistant sublines and only a minority (,5%) was androgen-regulated. Pathway analysis revealed enrichment in functions involving cellular movement, cell growth and cell death, as well as association with cancer and reproductive system disease. PC346DCC expressed residual levels of androgen receptor (AR) and showed significant down-regulation of androgen-regulated genes (p-value = 10 27). Up-regulation of VAV3 and TWIST1 oncogenes and repression of the DKK3 tumor-suppressor was observed in PC346DCC, suggesting a potential AR bypass mechanism. Subsequent validation of these three genes in patient samples confirmed that expression was deregulated during prostate cancer progression

    Large-scale, prospective, observational studies in patients with psoriasis and psoriatic arthritis: A systematic and critical review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Observational studies, if conducted appropriately, play an important role in the decision-making process providing invaluable information on effectiveness, patient-reported outcomes and costs in a real-world environment. We conducted a systematic review of large-scale, prospective, cohort studies with the aim of (a) summarising design characteristics, the interventions or aspects of the disease studied and the outcomes measured and (b) investigating methodological quality.</p> <p>Methods</p> <p>We included prospective, cohort studies which included at least 100 adults with psoriasis or psoriatic arthritis. Studies were identified through searches in electronic databases (Pubmed, Medline, Cochrane library, Centre for Reviews and Dissemination). Information on study characteristics were extracted and tabulated and quality assessment, using a checklist of 18 questions, was conducted.</p> <p>Results</p> <p>Thirty five papers covering 16 cohorts met the inclusion criteria. There were ten treatment-related studies, only two of which provided a comparison between treatments, and six non-treatment studies which examined a number of characteristics of the disease including mortality, morbidity, cost of illness and health-related quality of life. All studies included a clinical outcome measure and 11 included patient-reported outcomes, however only two studies reported information on patient utilities and two on costs. The quality of the assessed studies varied widely. Studies did well on a number of quality assessment questions including having clear objectives, documenting selection criteria, providing a representative sample, defining interventions/characteristics under study, defining and using appropriate outcomes, describing results clearly and using appropriate statistical tests. The quality assessment criteria least adhered to involved questions regarding sample size calculations, describing potential selection bias, defining and adjusting for confounders and losses to follow-up, and defining and describing a comparison group.</p> <p>Conclusion</p> <p>The review highlights the need for well designed prospective observational studies on the effectiveness, patient-reported outcomes and economic impact of treatment regimes for patients with psoriasis and psoriatic arthritis in a real-world environment.</p
    corecore