57 research outputs found

    Two new species of Odontostilbe historically hidden under O. microcephala (Characiformes: Cheirodontinae)

    Get PDF
    Specimens historically identified as Odontostilbe microcephala from the upper rio Paraná and Andean piedmont tributaries of the río Paraguay are reviewed and split in three species. We found that the distribution of O. microcephala is restricted to the Andean slope of the río Paraguay basin. The species is distinguished from congeners with subterminal mouth by the elongate body, usually 10-12 gill rakers on upper branch and smaller horizontal orbital diameter (24.6-32.8 % HL, mean 28.7%). Specimens from upper rio Paraná constitute two new species, diagnosed from other Cheirodontinae by the presence of mesopterygoid teeth, grouped on median portion and forming a continuous row. The new species are distinguished from each other by having premaxillary teeth with five cusps vs. nine cusps and by the number of lamellae in left and right sides of central median raphe of olfactory rosette with 20-21 vs. 11-12.Espécimes historicamente identificados com Odontostilbe microcephala do rio Paraná e tributários do río Paraguay, foram revisados e separados em três espécies. A distribuição de O. microcephala é restrita ao sopé andino da bacia do río Paraguay. A espécie é distinta das congêneres com boca subterminal pela forma alongada, geralmente 10-12 rastros branquiais no ramo superior e menor diâmetro horizontal da órbita (24,6-32,8 % CC, média 28,7%). Espécimes do alto rio Paraná constituem duas espécies novas diagnosticadas de outros Cheirodontinae pela presença de dentes no mesopterigoide, agrupados em sua porção média e formando uma fileira continua. As novas espécies distinguem-se por ter dentes premaxilares com cinco cúspides vs. nove cúspides e pelo número de lamelas nos lados esquerdo e direito da rafe central da roseta olfativa com 20-21 vs. 11-12

    IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    Get PDF
    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division

    Running GAGs: myxoid matrix in tumor pathology revisited: What’s in it for the pathologist?

    Get PDF
    Ever since Virchow introduced the entity myxoma, abundant myxoid extracellular matrix (ECM) has been recognized in various reactive and neoplastic lesions. Nowadays, the term “myxoid” is commonly used in daily pathological practice. But what do today’s pathologists mean by it, and what does the myxoid ECM tell the pathologist? What is known about the exact composition and function of the myxoid ECM 150 years after Virchow? Here, we give an overview of the composition and constituents of the myxoid ECM as known so far and demonstrate the heterogeneity of the myxoid ECM among different tumors. We discuss the possible role of the predominant constituents of the myxoid ECM and attempt to relate them to differences in clinical behavior. Finally, we will speculate on the potential relevance of this knowledge in daily pathological practice
    corecore