42 research outputs found

    Truck drivers' perceptions on wearable devices and health promotion:A qualitative study

    Get PDF
    Professional truck drivers, as other shift workers, have been identified as a high-risk group for various health conditions including cardiovascular disease, obesity, diabetes, sleep apnoea and stress. Mobile health technologies can potentially improve the health and wellbeing of people with a sedentary lifestyle such as truck drivers. Yet, only a few studies on health promotion interventions related to mobile health technologies for truck drivers have been conducted. We aimed to explore professional truck drivers views on health promotion delivered via mobile health technologies such as wearable devices.We conducted a phenomenological qualitative study, consisting of four semi-structured focus groups with 34 full-time professional truck drivers in the UK. The focus groups were audio-taped, transcribed verbatim and analysed using thematic content analysis. We discussed drivers perceptions of their health, lifestyle and work environment, and their past experience and expectations from mobile health technologies.The participants viewed their lifestyle as unhealthy and were aware of possible consequences. They expressed the need and wish to change their lifestyle, yet perceived it as an inherent, unavoidable outcome of their occupation. Current health improvement initiatives were not always aligned with their working conditions. The participants were generally willing to use mobile health technologies such as wearable devices, as a preventive measure to avoid prospect morbidity, particularly cardiovascular diseases. They were ambivalent about privacy and the risk of their employers monitoring their clinical data.Wearable devices may offer new possibilities for improving the health and wellbeing of truck drivers. Drivers were aware of their unhealthy lifestyle. They were interested in changing their lifestyle and health. Drivers raised concerns regarding being continuously monitored by their employer. Health improvement initiatives should be aligned with the unique working conditions of truck drivers. Future research is needed to examine the impact of wearable devices on improving the health and wellbeing of professional drivers

    Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells

    Get PDF
    Cell-penetrating peptides (CPP) or membrane-translocating peptides such as penetratin from Antennapedia homeodomain or TAT from human immunodeficiency virus are useful vectors for the delivery of protein antigens or their cytotoxic (Tc) or helper (Th) T cell epitopes to antigen-presenting cells. Mice immunized with CPP containing immunogens elicit antigen-specific Tc and/or Th responses and could be protected from tumor challenges. In the present paper, we investigate the mechanism of class I and class II antigen presentation of ovalbumin covalently linked to penetratin (AntpOVA) by bone marrow-derived dendritic cells with the use of biochemical inhibitors of various pathways of antigen processing and presentation. Results from our study suggested that uptake of AntpOVA is via a combination of energy-independent (membrane fusion) and energy-dependent pathways (endocytosis). Once internalized by either mechanism, multiple tap-dependent or independent antigen presentation pathways are accessed while not completely dependent on proteasomal processing but involving proteolytic trimming in the ER and Golgi compartments. Our study provides an understanding on the mechanism of antigen presentation mediated by CPP and leads to greater insights into future development of vaccine formulations

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S
    corecore