1,958 research outputs found

    Convective influx of plasma and beams in tokamaks with asymmetric ripple

    Get PDF

    Parametric pumping at finite frequency

    Get PDF
    We report on a first principles theory for analyzing the parametric electron pump at a finite frequency. The pump is controlled by two pumping parameters with phase difference ϕ\phi. In the zero frequency limit, our theory predicts the well known result that the pumped current is proportional to sinϕ\sin\phi. For the more general situation of a finite frequency, our theory predicts a non-vanishing pumped current even when the two driving forces are in phase, in agreement with the recent experimental results. We present the physical mechanism behind the nonzero pumped current at ϕ=0\phi=0, which we found to be due to photon-assisted processes

    Quantization of adiabatic pumped charge in the presence of superconducting lead

    Get PDF
    We investigate the parametric electron pumping of a double barrier structure in the presence of a superconducting lead. The parametric pumping is facilitated by cyclic variation of the barrier heights x1x_1 and x2x_2 of the barriers. In the weak coupling regime, there exists a resonance line in the parameter space (x1,x2)(x_1,x_2) so that the energy of the quasi-bound state is in line with the incoming Fermi energy. Levinson et al found recently that the pumped charge for each pumping cycle is quantized with Q=2eQ=2e for normal structure when the pumping contour encircles the resonance line. In the presence of a superconducting lead, we find that the pumped charge is quantized with the value 2e2e

    Optimal quantum pump in the presence of a superconducting lead

    Get PDF
    We investigate the parametric pumping of a hybrid structure consisting of a normal quantum dot, a normal lead and a superconducting lead. Using the time dependent scattering matrix theory, we have derived a general expression for the pumped electric current and heat current. We have also derived the relationship among the instantaneous pumped heat current, electric current, and shot noise. This gives a lower bound for the pumped heat current in the hybrid system similar to that of the normal case obtained by Avron et al

    No-relationship between impossibility of faster-than-light quantum communication and distinction of ensembles with the same density matrix

    Full text link
    It has been claimed in the literature that impossibility of faster-than-light quantum communication has an origin of indistinguishability of ensembles with the same density matrix. We show that the two concepts are not related. We argue that: 1) even with an ideal single-atom-precision measurement, it is generally impossible to produce two ensembles with exactly the same density matrix; or 2) to produce ensembles with the same density matrix, classical communication is necessary. Hence the impossibility of faster-than-light communication does not imply the indistinguishability of ensembles with the same density matrix.Comment: 4 pages and 3 figure

    Conductance Fluctuations of Open Quantum Dots under Microwave Radiation

    Full text link
    We develop a time dependent random matrix theory describing the influence of a time-dependent perturbation on mesoscopic conductance fluctuations in open quantum dots. The effect of external field is taken into account to all orders of perturbation theory, and our results are applicable to both weak and strong fields. We obtain temperature and magnetic field dependences of conductance fluctuations. The amplitude of conductance fluctuations is determined by electron temperature in the leads rather than by the width of electron distribution function in the dot. The asymmetry of conductance with respect to inversion of applied magnetic field is the main feature allowing to distinguish the effect of direct suppression of quantum interference from the simple heating if the frequency of external radiation is larger than the temperature of the leads ωT\hbar\omega \gg T.Comment: 7 pages, 5 figure

    Emphysematous cystitis and necrotizing fasciitis

    Get PDF
    Emphysematous cystitis is an uncommon and often severe infectious condition of the bladder that usually affects women and diabetics. We report a case of a 62-year-old male patient who presented with concomitant emphysematous cystitis and necrotizing fasciitis of the right leg. The patient was initially managed with emergent disarticulation of the right leg. Tissue cultures were positive for Ciprofloxacin-resistant Klebsiella pneumoniae. He was treated with Piperacillin-Tazobactam; however, due to the failure of conservative management of the condition, the patient underwent a cystoprostatectomy with ileal conduit. To our knowledge, this is the first report of concomitant emphysematous cystitis and necrotizing fasciitis requiring aggressive surgical intervention for both diseases

    Numerical Jordan-Wigner approach for two dimensional spin systems

    Full text link
    We present a numerical self consistent variational approach based on the Jordan-Wigner transformation for two dimensional spin systems. We apply it to the study of the well known quantum (S=1/2) antiferromagnetic XXZ system as a function of the easy-axis anisotropy \Delta on a periodic square lattice. For the SU(2) case the method converges to a N\'eel ordered ground state irrespectively of the input density profile used and in accordance with other studies. This shows the potential utility of the proposed method to investigate more complicated situations like frustrated or disordered systems.Comment: Revtex, 8 pages, 4 figure

    The role of Sox6 in zebrafish muscle fiber type specification

    Get PDF
    Background The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. Methods The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Results Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. Conclusions The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog

    Flux Creep and Flux Jumping

    Full text link
    We consider the flux jump instability of the Bean's critical state arising in the flux creep regime in type-II superconductors. We find the flux jump field, BjB_j, that determines the superconducting state stability criterion. We calculate the dependence of BjB_j on the external magnetic field ramp rate, B˙e\dot B_e. We demonstrate that under the conditions typical for most of the magnetization experiments the slope of the current-voltage curve in the flux creep regime determines the stability of the Bean's critical state, {\it i.e.}, the value of BjB_j. We show that a flux jump can be preceded by the magneto-thermal oscillations and find the frequency of these oscillations as a function of B˙e\dot B_e.Comment: 7 pages, ReVTeX, 2 figures attached as postscript file
    corecore