98 research outputs found

    Control of the switching behavior of ferromagnetic nanowires using magnetostatic interactions

    Get PDF
    Magnetostatic interactions between two end-to-end Permalloy (Ni80Fe20) nanowires have been studied as a function of their separation, end shape, and width. The change in switching field increases as the wires become closer, with deviations from the switching field of an isolated wire of up to 40% observed. The sign of the change depends on the relative magnetization orientation of the two wires, with higher fields for parallel magnetization and lower fields for antiparallel magnetization. A wire end shape has a strong influence, with larger field variations being seen for flat-ended wires than wires with tapered ends. The micromagnetic modeling and experiments performed here were in good qualitative agreement. The experimental control of switching behavior of one nanowire with another was also demonstrated using magnetostatic interactions

    Enhanced longitudinal magnetooptic Kerr effect contrast in nanomagnetic structures

    Get PDF
    We report on enhanced longitudinal magnetooptic Kerr effect signal contrast in thin-film nanomagnetic disks with in-plane magnetization when combined with dielectric layers that provide impedance matching to the structure and the underlying substrate. Kerr signals can increase by a factor of three, while substrate reflectance is almost completely suppressed. This leads to an increase in Kerr ellipticity relative to the background intensity and a subsequent improvement in the measured signal-to-noise ratio. Measurements using a beam focused on opaque 400-nm Ni disks yield contrast improvements of a factor of 8. Arrays of nanodisks demonstrate more complex behavior due to diffraction effects

    Plasmonic gold nanodiscs fabricated into a photonic-crystal nanocavity

    Get PDF
    We fabricate and characterise an optical structure consisting of a photonic crystal L3 nanocavity containing two gold nanodisks placed close to a field antinode. We use finite difference time domain (FDTD) modelling to show that the optical properties of the nanocavity are sensitive to the physical separation between the gold nanodisks, and that at reduced separation, the q-factor of a cavity mode polarised parallel to the dimer long-axis is reduced, indicating coupling between the cavity mode and a localised plasmon. Preliminary experimental measurements indeed indicate a damping of the cavity mode in the presence of the dimer; a result consistent with the FDTD modelling. Such a scheme may be used to integrate plasmonic systems into all-optical photonic circuits

    Direct imaging of domain-wall interactions in Ni80Fe20 planar nanowires

    Get PDF
    We have investigated magnetostatic interactions between domain walls in Ni80Fe20 planar nanowires using magnetic soft x-ray microscopy and micromagnetic simulations. In addition to significant monopole-like attraction and repulsion effects we observe that there is coupling of the magnetization configurations of the walls. This is explained in terms of an interaction energy that depends not only on the distance between the walls, but also upon their internal magnetization structure

    A GaAs-based self-aligned stripe distributed feedback laser

    Get PDF
    We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB) laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility in upper cladding design, which proved necessary due to limitations imposed by the grating infill and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing with high side-mode-suppression of >40 dB over the temperature range 20 °C–70 °C. The experimentally determined optical profile and grating confinement correlate well with those simulated using Fimmwave

    Broadband, wide-angle antireflection in GaAs through surface nano-structuring for solar cell applications

    Get PDF
    We demonstrate broadband and wide-angle antireflective surface nanostructuring in GaAs semiconductors using variable dose electron-beam lithography (EBL). Various designed structures are written with EBL on a positive EB-resist coated GaAs and developed followed by shallow inductively coupled plasma etching. An optimized nanostructured surface shows a reduced surface reflectivity down to less than 2.5% in the visible range of 450–700 nm and an average reflectance of less than 4% over a broad near-infrared wavelength range from 900–1400 nm. The results are obtained over a wide incidence angle of 33.3°. This study shows the potential for anti-reflective structures using a simpler reverse EBL process which can provide optical absorption or extraction efficiency enhancement in semiconductors relevant to improved performance in solar photovoltaics or light-emitting diodes

    Photonic integration of uniform GaAs nanowires in hexagonal and honeycomb lattice for broadband optical absorption

    Get PDF
    We present an experimental approach toward the realization of GaAs nanowires in the form of square, hexagonal, and honeycomb lattices for photonic integration toward enhanced optical properties. We have carried out a design and fabrication process on GaAs wafers using electron beam lithography patterning, reactive ion etching for hard mask removal, and inductively coupled plasma etching of the material. The resulting photonic crystals are analyzed by field emission scanning electron microscopy. Nanowire array designs in a square, hexagonal, and honeycomb lattice with a variable height of nanowires have been studied. Using finite-difference time-domain simulation, we can derive the comparative optical absorption properties of these nanowire arrays. A very high broadband absorbance of >94% over the 400 nm–1000 nm wavelength range is studied for hexagonal and honeycomb arrays, while a square lattice array shows only a maximum of 85% absorption. We report a minimum of 2% reflectance, or 98% optical absorbance, over 450 nm–700 nm and over a wide angle of 45° through hexagonal and honeycomb lattice integration in GaAs. These results will have potential applications toward broadband optical absorption or light trapping in solar energy harvesting

    Control of polarization and mode mapping of small volume high Q micropillars

    Get PDF
    We show that the polarization of the emission of a single quantum dot embedded within a microcavity pillar of elliptical cross section can be completely controlled and even switched between two orthogonal linear polarizations by changing the coupling of the dot emission with the polarized photonic modes. We also measure the spatial profle of the emission of a series of pillars with different ellipticities and show that the results can be well described by simple theoretical modeling of the modes of an infinite length elliptical cylinder

    Selective excitation of localized spin-wave modes by optically pumped surface acoustic waves

    Get PDF
    We explore the feasibility of exciting localized spin-wave modes in ferromagnetic nanostructures using surface acoustic waves. The time-resolved Faraday effect is used to probe the magnetization dynamics of an array of nickel nanowires. The optical-pump pulse excites both spin-wave modes of the nanowires and acoustic modes of the substrate and we observe that, when the frequencies of these modes coincide, the amplitude of magnetization dynamics is substantially enhanced due to magnetoelastic coupling between the two. Notably, by tuning the magnitude of an externally applied magnetic field, optically excited surface acoustic waves can selectively excite either the upper or lower branches of a splitting in the nanowire’s spin-wave spectrum, which micromagnetic simulations indicate is caused by localization of spin waves in different parts of the nanowire. Thus, our results indicate the feasibility of using acoustic waves to selectively excite spatially confined spin waves, an approach that may find utility in future magnonic devices where coherent structural deformations could be used as coherent sources of propagating spin waves
    • …
    corecore