201 research outputs found

    The effective potential and the renormalisation group

    Full text link
    We discuss renormalisation group improvement of the effective potential both in general and in the context of O(N)O(N) scalar \p^4 and the Standard Model. In the latter case we find that absolute stability of the electroweak vacuum implies that mH≥1.95mt−189 GeVm_H\geq 1.95m_t-189~GeV, for \as (M_Z) = 0.11. We point out that the lower bound on mHm_H {\it decreases\/} if \as (M_Z) is increased.Comment: 22 pages plus three PostScript figures (appended), Liverpool preprint LTH 288, University of Michigan preprint UM-TH-92-2

    Thermal Hall conductivity of marginal Fermi liquids subject to out-of plane impurities in high-TcT_c cuprates

    Full text link
    The effect of out-of-plane impurities on the thermal Hall conductivity κxy\kappa_{xy} of in-plane marginal-Fermi-liquid (MFL) quasiparticles in high-TcT_c cuprates is examined by following the work on electrical Hall conductivity σxy\sigma_{xy} by Varma and Abraham [Phys. Rev. Lett. 86, 4652 (2001)]. It is shown that the effective Lorentz force exerted by these impurities is a weak function of energies of the MFL quasiparticles, resulting in nearly the same temperature dependence of κxy/T\kappa_{xy}/T and σxy\sigma_{xy}, indicative of obedience of the Wiedemann-Franz law. The inconsistency of the theoretical result with the experimental one is speculated to be the consequence of the different amounts of out-of-plane impurities in the two YBaCuO samples used for the κxy\kappa_{xy} and σxy\sigma_{xy} measurements.Comment: 5 pages, 2 eps figures; final versio

    Kosterlitz Thouless Universality in Dimer Models

    Full text link
    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.Comment: 4 pages, 4 figure

    On the Spin Gap Phase of Strongly-Correlated Electrons

    Full text link
    We discuss the possible existence of a spin-gap phase in the low-doping regime of strongly-correlated two-dimensional electrons within the gauge field description of the t-J model. The spin-gap phase was recently shown by Ubbens and Lee to be destroyed by gauge field quantum fluctuations for a single-layer 2D system in the absence of disorder and for a full gap. We show that the same conclusion applies both in the dirty limit and for the case of a gapless spinon condensate.Comment: 7 pages, uuencoded Postscript, including 1 figur

    The Path-Integral Approach to the N=2 Linear Sigma Model

    Get PDF
    In QFT the effective potential is an important tool to study symmetry breaking phenomena. It is known that, in some theories, the canonical approach and the path-integral approach yield different effective potentials. In this paper we investigate this for the Euclidean N=2 linear sigma model. Both the Green's functions and the effective potential will be computed in three different ways. The relative merits of the various approaches are discussed.Comment: 2 figure

    A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator

    Full text link
    We evaluate from first principles the self-consistent Hartree-Fock energies for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott insulator on a two-dimensional square lattice. We find that nearest-neighbor Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate coupling 3 < U/t <8. This stabilization is mediated through the generation of ``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes cloaked by a meron-vortex in the spin-flux AFM background are charged bosons. Our static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices. This upper bound is lower than the energy of the corresponding charged stripe configurations. A finite density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad mid-infrared band in the optical absorption spectrum as observed experimentally. At very low doping (below 0.05) the doping charges create extremely tightly bound meron-antimeron pairs or even isolated conventional spin-polarons, whereas for very high doping (above 0.4) the spin background itself becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at intermediate coupling and intermediate doping concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some figure

    Asymptotically exact mean field theory for the Anderson model including double occupancy

    Full text link
    The Anderson impurity model for finite values of the Coulomb repulsion UU is studied using a slave boson representation for the empty and doubly occupied ff-level. In order to avoid well known problems with a naive mean field theory for the boson fields, we use the coherent state path integral representation to first integrate out the double occupancy slave bosons. The resulting effective action is linearized using {\bf two-time} auxiliary fields. After integration over the fermionic degrees of freedom one obtains an effective action suitable for a 1/Nf1/N_f-expansion. Concerning the constraint the same problem remains as in the infinite UU case. For T→0T \rightarrow 0 and Nf→∞N_f \rightarrow \infty exact results for the ground state properties are recovered in the saddle point approximation. Numerical solutions of the saddle point equations show that even in the spindegenerate case Nf=2N_f = 2 the results are quite good.Comment: 19, RevTeX, cond-mat/930502

    Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation

    Full text link
    We calculate the exponents of the threshold singularities in the photoemission spectrum of a deep core hole and its X-ray absorption spectrum in the framework of a systematic many-body theory of slave bosons and pseudofermions (for the empty and occupied core level). In this representation, photoemission and X-ray absorption can be understood on the same footing; no distinction between orthogonality catastrophe and excitonic effects is necessary. We apply the conserving slave particle T-matrix approximation (CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior systems with strong local correlations, to the X-ray problem as a test case. The numerical results for both photoemission and X-ray absorption are found to be in agreement with the exact infrared powerlaw behavior in the weak as well as in the strong coupling regions. We point out a close relation of the CTMA with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio

    Oscillations of the magnetic polarization in a Kondo impurity at finite magnetic fields

    Full text link
    The electronic properties of a Kondo impurity are investigated in a magnetic field using linear response theory. The distribution of electrical charge and magnetic polarization are calculated in real space. The (small) magnetic field does not change the charge distribution. However, it unmasks the Kondo cloud. The (equal) weight of the d-electron components with their magnetic moment up and down is shifted and the compensating s-electron clouds don't cancel any longer (a requirement for an experimental detection of the Kondo cloud). In addition to the net magnetic polarization of the conduction electrons an oscillating magnetic polarization with a period of half the Fermi wave length is observed. However, this oscillating magnetic polarization does not show the long range behavior of Rudermann-Kittel-Kasuya-Yosida oscillations because the oscillations don't extend beyond the Kondo radius. They represent an internal electronic structure of the Kondo impurity in a magnetic field. PACS: 75.20.Hr, 71.23.An, 71.27.+

    Non-Fermi-liquid behavior in the Kondo lattices induced by peculiarities of magnetic ordering and spin dynamics

    Full text link
    A scaling consideration of the Kondo lattices is performed with account of singularities in the spin excitation spectral function. It is shown that a non-Fermi-liquid (NFL) behavior between two critical values of the bare s−fs-f coupling constant occurs naturally for complicated magnetic structures with several magnon branches. This may explain the fact that a NFL behavior takes place often in the heavy-fermion systems with peculiar spin dynamics. Another kind of a NFL-like state (with different critical exponents) can occur for simple antiferromagnets with account of magnon damping, and for paramagnets, especially with two-dimensional character of spin fluctuations. The mechanisms proposed lead to some predictions about behavior of specific heat, resistivity, magnetic susceptibility, and anisotropy parameter, which can be verified experimentally.Comment: 16 pages, RevTeX, 4 Postscript figures. Extended versio
    • …
    corecore