91 research outputs found

    Inverse semigroup actions as groupoid actions

    Get PDF
    To an inverse semigroup, we associate an \'etale groupoid such that its actions on topological spaces are equivalent to actions of the inverse semigroup. Both the object and the arrow space of this groupoid are non-Hausdorff. We show that this construction provides an adjoint functor to the functor that maps a groupoid to its inverse semigroup of bisections, where we turn \'etale groupoids into a category using algebraic morphisms. We also discuss how to recover a groupoid from this inverse semigroup.Comment: Corrected a typo in Lemma 2.14 in the published versio

    Intuitionistic quantum logic of an n-level system

    Get PDF
    A decade ago, Isham and Butterfield proposed a topos-theoretic approach to quantum mechanics, which meanwhile has been extended by Doering and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combining the C*-algebraic approach to quantum theory with the so-called internal language of topos theory (see arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup through the concrete example of the C*-algebra of complex n by n matrices. This leads to an explicit expression for the pointfree quantum phase space and the associated logical structure and Gelfand transform of an n-level system. We also determine the pertinent non-probabilisitic state-proposition pairing (or valuation) and give a very natural topos-theoretic reformulation of the Kochen--Specker Theorem. The essential point is that the logical structure of a quantum n-level system turns out to be intuitionistic, which means that it is distributive but fails to satisfy the law of the excluded middle (both in opposition to the usual quantum logic).Comment: 26 page

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    Pre-torsors and Galois comodules over mixed distributive laws

    Full text link
    We study comodule functors for comonads arising from mixed distributive laws. Their Galois property is reformulated in terms of a (so-called) regular arrow in Street's bicategory of comonads. Between categories possessing equalizers, we introduce the notion of a regular adjunction. An equivalence is proven between the category of pre-torsors over two regular adjunctions (NA,RA)(N_A,R_A) and (NB,RB)(N_B,R_B) on one hand, and the category of regular comonad arrows (RA,Ο)(R_A,\xi) from some equalizer preserving comonad C{\mathbb C} to NBRBN_BR_B on the other. This generalizes a known relationship between pre-torsors over equal commutative rings and Galois objects of coalgebras.Developing a bi-Galois theory of comonads, we show that a pre-torsor over regular adjunctions determines also a second (equalizer preserving) comonad D{\mathbb D} and a co-regular comonad arrow from D{\mathbb D} to NARAN_A R_A, such that the comodule categories of C{\mathbb C} and D{\mathbb D} are equivalent.Comment: 34 pages LaTeX file. v2: a few typos correcte

    Continuous Truth II: Reflections

    Get PDF
    Abstract. In the late 1960s, Dana Scott first showed how the Stone-Tarski topological interpretation of Heyting’s calculus could be extended to model intuitionistic analysis; in particular Brouwer’s continuity prin-ciple. In the early ’80s we and others outlined a general treatment of non-constructive objects, using sheaf models—constructions from topos theory—to model not only Brouwer’s non-classical conclusions, but also his creation of “new mathematical entities”. These categorical models are intimately related to, but more general than Scott’s topological model. The primary goal of this paper is to consider the question of iterated extensions. Can we derive new insights by repeating the second act? In Continuous Truth I, presented at Logic Colloquium ’82 in Florence, we showed that general principles of continuity, local choice and local com-pactness hold in the gros topos of sheaves over the category of separable locales equipped with the open cover topology. We touched on the question of iteration. Here we develop a more gen-eral analysis of iterated categorical extensions, that leads to a reflection schema for statements of predicative analysis. We also take the opportunity to revisit some aspects of both Continuous Truth I and Formal Spaces (Fourman & Grayson 1982), and correct two long-standing errors therein

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029

    Causal categories: relativistically interacting processes

    Full text link
    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.Comment: 43 pages, lots of figure

    `What is a Thing?': Topos Theory in the Foundations of Physics

    Full text link
    The goal of this paper is to summarise the first steps in developing a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. In doing so we provide a new answer to Heidegger's timeless question ``What is a thing?''. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics uses the topos of sets. Other theories involve a different topos. For the types of theory discussed in this paper, a key goal is to represent any physical quantity AA with an arrow \breve{A}_\phi:\Si_\phi\map\R_\phi where \Si_\phi and Rϕ\R_\phi are two special objects (the `state-object' and `quantity-value object') in the appropriate topos, τϕ\tau_\phi. We discuss two different types of language that can be attached to a system, SS. The first, \PL{S}, is a propositional language; the second, \L{S}, is a higher-order, typed language. Both languages provide deductive systems with an intuitionistic logic. With the aid of \PL{S} we expand and develop some of the earlier work (By CJI and collaborators.) on topos theory and quantum physics. A key step is a process we term `daseinisation' by which a projection operator is mapped to a sub-object of the spectral presheaf \Sig--the topos quantum analogue of a classical state space. The topos concerned is \SetH{}: the category of contravariant set-valued functors on the category (partially ordered set) \V{} of commutative sub-algebras of the algebra of bounded operators on the quantum Hilbert space \Hi.Comment: To appear in ``New Structures in Physics'' ed R. Coeck
    • 

    corecore