66 research outputs found

    Interactions of Ionic Liquids with Uranium and Its Bioreduction

    Full text link

    Overcoming the engineering constraints for scaling-up the state-of-the-art catalyst for tail-gas N2O decomposition

    Get PDF
    An efficient process is reported for preparing a state-of-the-art Fe-ferrierite catalyst for N2O decomposition under industrial tail-gas conditions. In the synthesis procedure we evaluate the very demanding constraints for scale-up; i.e. large reactor volumes are typically needed, long processing times and considerable amounts of waste water is generated. The proposed synthesis minimizes the amount of water used, and therefore the amount produced waste water is minimal; in this approach there is no liquid residual water stream that would need intensive processing. This has remarkable benefits in terms of process design, since the volume of equipment is reduced and the energy-intensive filtration is eliminated. This route exemplifies the concept of process intensification, with the ambition to re-engineer an existing process to make the industrial catalyst manufacture more sustainable. The so-obtained catalyst is active, selective and very stable under tail gas conditions containing H2O, NO and O2, together with N2O; keeping a high conversion during 70 h time on stream at 700 K, with a decay of 0.01%/h, while the standard reference catalyst decays at 0.06%/h; hence it deactivates six times slower, with ~5% absolute points of higher conversion. The excellent catalytic performance is ascribed to the differential speciation

    Additive sustainability footprint: Rationale and pilot evaluation of a tool for assessing the sustainable use of PVC additives

    Get PDF
    © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers. PVC compounds contain additives necessary for processing and stability, and to modify the plastic's properties. The Europe-wide VinylPlus® voluntary commitment includes a challenge to make progress toward sustainable use of additives. Additive Sustainability Footprint (ASF) was developed to assess sustainable use of additives across the whole societal life cycles of finished PVC articles, taking a risk-based approach rather than simplistic hazard assessment. ASF addresses impacts across six life cycle assessment (LCA) stages established by ISO Standard 14040, using the four System Conditions (sustainability principles) developed by The Natural Step (TNS) covering social as well as environmental factors. For each LCA stage/System Condition combination, seven generically similar questions cover negative impacts (many covered by existing tools and regulations) but also the additive's positive contributions to the sustainability of finished articles. Positive contributions include ethical sourcing, longevity of service life, low maintenance inputs, and recyclability. Answers to questions determine a score, which can be combined across the life cycle and with other additives. Testing on a generic EU PVC window profile supported ASF development and demonstrated applicability and potential benefits including use for sensitivity analysis of alternative additives from different geopolitical regions or from recycled as opposed to virgin sources. J. VINYL ADDIT. TECHNOL., 2019. © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers

    Immobilization and compartmentalization of homogeneous catalysts

    No full text
    No abstract
    corecore