39 research outputs found
Mesoscopic Stern-Gerlach device to polarize spin currents
Spin preparation and spin detection are fundamental problems in spintronics
and in several solid state proposals for quantum information processing. Here
we propose the mesoscopic equivalent of an optical polarizing beam splitter
(PBS). This interferometric device uses non-dispersive phases (Aharonov-Bohm
and Rashba) in order to separate spin up and spin down carriers into distinct
outputs and thus it is analogous to a Stern-Gerlach apparatus. It can be used
both as a spin preparation device and as a spin measuring device by converting
spin into charge (orbital) degrees of freedom. An important feature of the
proposed spin polarizer is that no ferromagnetic contacts are used.Comment: Updated to the published versio
Coherent spin valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions
Coherent quantum transport in ferromagnetic/ semiconductor/ ferromagnetic
junctions is studied theoretically within the Landauer framework of ballistic
transport. We show that quantum coherence can have unexpected implications for
spin injection and that some intuitive spintronic concepts which are founded in
semi-classical physics no longer apply: A quantum spin-valve (QSV) effect
occurs even in the absence of a net spin polarized current flowing through the
device, unlike in the classical regime. The converse effect also arises, i.e. a
zero spin-valve signal for a non-vanishing spin-current. We introduce new
criteria useful for analyzing quantum and classical spin transport phenomena
and the relationships between them. The effects on QSV behavior of
spin-dependent electron transmission at the interfaces, interface Schottky
barriers, Rashba spin-orbit coupling and temperature, are systematically
investigated. While the signature of the QSV is found to be sensitive to
temperature, interestingly, that of its converse is not. We argue that the QSV
phenomenon can have important implications for the interpretation of
spin-injection in quantum spintronic experiments with spin-valve geometries.Comment: 15 pages including 11 figures. To appear in PR
Optoelectric spin injection in semiconductor heterostructures without ferromagnet
We have shown that electron spin density can be generated by a dc current
flowing across a junction with an embedded asymmetric quantum well. Spin
polarization is created in the quantum well by radiative electron-hole
recombination when the conduction electron momentum distribution is shifted
with respect to the momentum distribution of holes in the spin split valence
subbands. Spin current appears when the spin polarization is injected from the
quantum well into the -doped region of the junction. The accompanied
emission of circularly polarized light from the quantum well can serve as a
spin polarization detector.Comment: 2 figure
First-principles study of nucleation, growth, and interface structure of Fe/GaAs
We use density-functional theory to describe the initial stages of Fe film
growth on GaAs(001), focusing on the interplay between chemistry and magnetism
at the interface. Four features appear to be generic: (1) At submonolayer
coverages, a strong chemical interaction between Fe and substrate atoms leads
to substitutional adsorption and intermixing. (2) For films of several
monolayers and more, atomically abrupt interfaces are energetically favored.
(3) For Fe films over a range of thicknesses, both Ga- and As-adlayers
dramatically reduce the formation energies of the films, suggesting a
surfactant-like action. (4) During the first few monolayers of growth, Ga or As
atoms are likely to be liberated from the interface and diffuse to the Fe film
surface. Magnetism plays an important auxiliary role for these processes, even
in the dilute limit of atomic adsorption. Most of the films exhibit
ferromagnetic order even at half-monolayer coverage, while certain
adlayer-capped films show a slight preference for antiferromagnetic order.Comment: 11 two-column pages, 12 figures, to appear in Phys. Rev.
High-field magnetization study of the S = 1/2 antiferromagnetic Heisenberg chain [PM Cu(NO)(HO)] with a field-induced gap
We present a high-field magnetization study of the = 1/2
antiferromagnetic Heisenberg chain [PM Cu(NO)(HO)]. For
this material, as result of the Dzyaloshinskii-Moriya interaction and a
staggered tensor, the ground state is characterized by an anisotropic
field-induced spin excitation gap and a staggered magnetization. Our data
reveal the qualitatively different behavior in the directions of maximum and
zero spin excitation gap. The data are analyzed via exact diagonalization of a
linear spin chain with up to 20 sites and on basis of the Bethe ansatz
equations, respectively. For both directions we find very good agreement
between experimental data and theoretical calculations. We extract the magnetic
coupling strength along the chain direction to 36.3(5) K and determine
the field dependence of the staggered magnetization component .Comment: 5 pages, 2 figures (minor changes to manuscript and figures
Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors
It is predicted that certain atomically ordered interfaces between some
ferromagnetic metals (F) and semiconductors (S) should act as ideal spin
filters that transmit electrons only from the majority spin bands or only from
the minority spin bands of the F to the S at the Fermi energy, even for F with
both majority and minority bands at the Fermi level. Criteria for determining
which combinations of F, S and interface should be ideal spin filters are
formulated. The criteria depend only on the bulk band structures of the S and F
and on the translational symmetries of the S, F and interface. Several examples
of systems that meet these criteria to a high degree of precision are
identified. Disordered interfaces between F and S are also studied and it is
found that intermixing between the S and F can result in interfaces with spin
anti-filtering properties, the transmitted electrons being much less spin
polarized than those in the ferromagnetic metal at the Fermi energy. A patent
application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure
Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems
We study spin effects in the magneto-conductance of ballistic mesoscopic
systems subject to inhomogeneous magnetic fields. We present a numerical
approach to the spin-dependent Landauer conductance which generalizes recursive
Green function techniques to the case with spin. Based on this method we
address spin-flip effects in quantum transport of spin-polarized and
-unpolarized electrons through quantum wires and various two-dimensional
Aharonov-Bohm geometries. In particular, we investigate the range of validity
of a spin switch mechanism recently found which allows for controlling spins
indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a
transfer-matrix model for one-dimensional ring structures presented in the
first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
Spin-current modulation and square-wave transmission through periodically stubbed electron waveguides
Ballistic spin transport through waveguides, with symmetric or asymmetric
double stubs attached to them periodically, is studied systematically in the
presence of a weak spin-orbit coupling that makes the electrons precess. By an
appropriate choice of the waveguide length and of the stub parameters injected
spin-polarized electrons can be blocked completely and the transmission shows a
periodic and nearly square-type behavior, with values 1 and 0, with wide gaps
when only one mode is allowed to propagate in the waveguide. A similar behavior
is possible for a certain range of the stub parameters even when two-modes can
propagate in the waveguide and the conductance is doubled. Such a structure is
a good candidate for establishing a realistic spin transistor. A further
modulation of the spin current can be achieved by inserting defects in a
finite-number stub superlattice. Finite-temperature effects on the spin
conductance are also considered.Comment: 19 pages, 8 figure
Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures
We show that spin-polarized electron transmission across
semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on
the degree of spin polarization as well as the strengths of potential and
spin-flip scattering at the interface. We demonstrate that increasing the Fermi
velocity mismatch in the Sm and S regions can lead to enhanced junction
transparency in the presence of spin polarization. We find that the Andreev
reflection amplitude at the superconducting gap energy is a robust measure of
the spin polarization magnitude, being independent of the strengths of
potential and spin-flip scattering and the Fermi velocity of the
superconductor.Comment: 4 pages, 2 figure
Magnetic properties of a new molecular-based spin-ladder system: (5IAP)2CuBr4*2H2O
We have synthesized and characterized a new spin-1/2 Heisenberg
antiferromagnetic ladder: bis 5-iodo-2-aminopyridinium tetrabromocuprate(II)
dihydrate. X-ray diffraction studies show the structure of the compound to
consist of well isolated stacked ladders and the interaction between the Cu(2+)
atoms to be due to direct Br...Br contacts. Magnetic susceptibility and
magnetization studies show the compound to be in the strong-coupling limit,
with the interaction along the rungs (J' ~ 13 K) much greater than the
interaction along the rails (J ~ 1 K). Magnetic critical fields are observed
near 8.3 T and 10.4 T, respectively, establishing the existence of the energy
gap.Comment: 10 pages, 4 figures, submitted to Phys. Rev. B Figure 4 did not
print. *.eps files replaced with figures.ps fil
