17 research outputs found

    Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results

    Get PDF
    We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3′ of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Implications of H.E.S.S. observations of pulsar wind nebulae

    Full text link
    In this review paper on pulsar wind nebulae (PWN) we discuss the properties of such nebulae within the context of containment against cross-field diffusion (versus normal advection), the effect of reverse shocks on the evolution of offset ``Vela-like'' PWN, constraints on maximum particle energetics, magnetic field strength estimates based on spectral and spatial properties, and the implication of such field estimates on the composition of the wind. A significant part of the discussion is based on the High Energy Stereoscopic System ({\it H.E.S.S.} or {\it HESS}) detection of the two evolved pulsar wind nebulae Vela X (cocoon) and HESS J1825-137. In the case of Vela X (cocoon) we also review evidence of a hadronic versus a leptonic interpretation, showing that a leptonic interpretation is favored for the {\it HESS} signal. The constraints discussed in this review paper sets a general framework for the interpretation of a number of offset, filled-center nebulae seen by {\it HESS}. These sources are found along the galactic plane with galactic latitudes b0|b|\sim 0, where significant amounts of molecular gas is found. In these regions, we find that the interstellar medium is inhomogeneous, which has an effect on the morphology of supernova shock expansion. One consequence of this effect is the formation of offset pulsar wind nebulae as observed.Comment: to appear in Springer Lecture Notes on Neutron Stars and Pulsars: 40 years after their discovery, eds. W. Becke

    Probing the radio to X-Ray connection of the Vela X pulsar wind nebula with Fermi Lat and H.E.S.S

    No full text
    http://www.iop.org/EJ/article/1538-4357/689/2/L125/595959.pdf?request-id=b4fe913c-ad58-45b0-90c2-ed29201b9ec

    The H-alpha Bow-Shock Nebula Around PSR B0740-28

    No full text

    PSR B1951+32 and SNR CTB 80: Association Confirmed

    No full text
    corecore