20 research outputs found

    The Boson peak of model glass systems and its relation to atomic structure

    Get PDF
    Abstract.: Bulk metallic glasses (BMGs) exhibit a rich variety of vibrational properties resulting from significant atomic scale disorder. The Boson peak, which reflects an enhancement of states in the low frequency regime of the vibrational density of states (VDOS), is one such experimental signature of amorphous materials that has gained much interest in recent times. However, the precise nature of these low frequency modes and how they are influenced by local atomic structure remains unclear. Past simulation work has demonstrated that such modes consist of a mixture of propagating and localized components, and have been referred to as quasi-localized modes. Using standard harmonic analysis, the present work investigates the structural origin of such modes by diagonalising the Hessian of atomistic BMG structures derived from molecular dynamics simulations using a binary Lennard Jones pair potential. It is found that the quasi-localized vibrational modes responsible for the low frequency enhancement of the VDOS exist in a structural environment characterized primarily by low elastic shear moduli, but also increased free volume, a hydrostatic pressure that is tensile, and low bulk moduli. These findings are found to arise from the long-range attractive nature of the pair-wise interaction potential, which manifests itself in the corresponding Hessian as long-range off-diagonal disorder characterized by a distribution of negative effective spring constant

    Bonding in MgSi and AlMgSi Compounds Relevant to AlMgSi Alloys

    Full text link
    The bonding and stability of MgSi and AlMgSi compounds relevant to AlMgSi alloys is investigated with the use of (L)APW+(lo) DFT calculations. We show that the β\beta and β′′\beta'' phases found in the precipitation sequence are characterised by the presence of covalent bonds between Si-Si nearest neighbour pairs and covalent/ionic bonds between Mg-Si nearest neighbour pairs. We then investigate the stability of two recently discovered precipitate phases, U1 and U2, both containing Al in addition to Mg and Si. We show that both phases are characterised by tightly bound Al-Si networks, made possible by a transfer of charge from the Mg atoms.Comment: 11 pages, 30 figures, submitted to Phys. Rev.

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.
    corecore