263 research outputs found

    Global convergence of a non-convex Douglas-Rachford iteration

    Get PDF
    We establish a region of convergence for the proto-typical non-convex Douglas-Rachford iteration which finds a point on the intersection of a line and a circle. Previous work on the non-convex iteration [2] was only able to establish local convergence, and was ineffective in that no explicit region of convergence could be given

    Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption

    Full text link
    We extend our previous result on the focusing cubic Klein-Gordon equation in three dimensions to the non-radial case, giving a complete classification of global dynamics of all solutions with energy at most slightly above that of the ground state.Comment: 40 page

    Blow up criterion for compressible nematic liquid crystal flows in dimension three

    Full text link
    In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling the compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of gradient of liquid crystal director field.Comment: 22 page

    On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials

    Full text link
    The paper concerns L1L^1- convergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (-4\le \gm<0), with and without angular cutoff. We prove the time-averaged L1L^1-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2+|\gm|. For the usual L1L^1-convergence we prove that the convergence rate can be controlled from below by the initial energy tails, and hence, for initial data with long energy tails, the convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on the collision kernel with -1\le \gm<0, there are algebraic upper and lower bounds on the rate of L1L^1-convergence to equilibrium. Our methods of proof are based on entropy inequalities and moment estimates.Comment: This version contains a strengthened theorem 3, on rate of convergence, considerably relaxing the hypotheses on the initial data, and introducing a new method for avoiding use of poitwise lower bounds in applications of entropy production to convergence problem

    On low temperature kinetic theory; spin diffusion, Bose Einstein condensates, anyons

    Full text link
    The paper considers some typical problems for kinetic models evolving through pair-collisions at temperatures not far from absolute zero, which illustrate specific quantum behaviours. Based on these examples, a number of differences between quantum and classical Boltzmann theory is then discussed in more general terms.Comment: 25 pages, minor updates of previous versio

    A Rigorous Derivation of the Gross-Pitaevskii Energy Functional for a Two-Dimensional Bose Gas

    Full text link
    We consider the ground state properties of an inhomogeneous two-dimensional Bose gas with a repulsive, short range pair interaction and an external confining potential. In the limit when the particle number NN is large but ρˉa2\bar\rho a^2 is small, where ρˉ\bar\rho is the average particle density and aa the scattering length, the ground state energy and density are rigorously shown to be given to leading order by a Gross-Pitaevskii (GP) energy functional with a coupling constant g1/ln(ρˉa2)g\sim 1/|\ln(\bar\rho a^2)|. In contrast to the 3D case the coupling constant depends on NN through the mean density. The GP energy per particle depends only on NgNg. In 2D this parameter is typically so large that the gradient term in the GP energy functional is negligible and the simpler description by a Thomas-Fermi type functional is adequate.Comment: 14 pages, no figures, latex 2e. References, some clarifications and an appendix added. To appear in Commun. Math. Phy

    Supercritical biharmonic equations with power-type nonlinearity

    Full text link
    The biharmonic supercritical equation Δ2u=up1u\Delta^2u=|u|^{p-1}u, where n>4n>4 and p>(n+4)/(n4)p>(n+4)/(n-4), is studied in the whole space Rn\mathbb{R}^n as well as in a modified form with λ(1+u)p\lambda(1+u)^p as right-hand-side with an additional eigenvalue parameter λ>0\lambda>0 in the unit ball, in the latter case together with Dirichlet boundary conditions. As for entire regular radial solutions we prove oscillatory behaviour around the explicitly known radial {\it singular} solution, provided p((n+4)/(n4),pc)p\in((n+4)/(n-4),p_c), where pc((n+4)/(n4),]p_c\in ((n+4)/(n-4),\infty] is a further critical exponent, which was introduced in a recent work by Gazzola and the second author. The third author proved already that these oscillations do not occur in the complementing case, where ppcp\ge p_c. Concerning the Dirichlet problem we prove existence of at least one singular solution with corresponding eigenvalue parameter. Moreover, for the extremal solution in the bifurcation diagram for this nonlinear biharmonic eigenvalue problem, we prove smoothness as long as p((n+4)/(n4),pc)p\in((n+4)/(n-4),p_c)

    Regularity results for the spherically symmetric Einstein-Vlasov system

    Full text link
    The spherically symmetric Einstein-Vlasov system is considered in Schwarzschild coordinates and in maximal-isotropic coordinates. An open problem is the issue of global existence for initial data without size restrictions. The main purpose of the present work is to propose a method of approach for general initial data, which improves the regularity of the terms that need to be estimated compared to previous methods. We prove that global existence holds outside the centre in both these coordinate systems. In the Schwarzschild case we improve the bound on the momentum support obtained in \cite{RRS} for compact initial data. The improvement implies that we can admit non-compact data with both ingoing and outgoing matter. This extends one of the results in \cite{AR1}. In particular our method avoids the difficult task of treating the pointwise matter terms. Furthermore, we show that singularities never form in Schwarzschild time for ingoing matter as long as 3mr.3m\leq r. This removes an additional assumption made in \cite{A1}. Our result in maximal-isotropic coordinates is analogous to the result in \cite{R1}, but our method is different and it improves the regularity of the terms that need to be estimated for proving global existence in general.Comment: 25 pages. To appear in Ann. Henri Poincar\'

    A variational approach to the macroscopic electrodynamics of anisotropic hard superconductors

    Full text link
    We consider the Bean's critical state model for anisotropic superconductors. A variational problem solved by the quasi--static evolution of the internal magnetic field is obtained as the Γ\Gamma-limit of functionals arising from the Maxwell's equations combined with a power law for the dissipation. Moreover, the quasi--static approximation of the internal electric field is recovered, using a first order necessary condition. If the sample is a long cylinder subjected to an axial uniform external field, the macroscopic electrodynamics is explicitly determined.Comment: 24 pages, 15 figure

    Non-radial sign-changing solutions for the Schroedinger-Poisson problem in the semiclassical limit

    Get PDF
    We study the existence of nonradial sign-changing solutions to the Schroedinger-Poisson system in dimension N>=3. We construct nonradial sign-changing multi-peak solutions whose peaks are displaced in suitable symmetric configurations and collapse to the same point. The proof is based on the Lyapunov-Schmidt reduction
    corecore