1,481 research outputs found

    Evolving Networks with Multi-species Nodes and Spread in the Number of Initial Links

    Full text link
    We consider models for growing networks incorporating two effects not previously considered: (i) different species of nodes, with each species having different properties (such as different attachment probabilities to other node species); and (ii) when a new node is born, its number of links to old nodes is random with a given probability distribution. Our numerical simulations show good agreement with analytic solutions. As an application of our model, we investigate the movie-actor network with movies considered as nodes and actors as links.Comment: 5 pages, 5 figures, submitted to PR

    Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network

    Full text link
    We investigate a model protein interaction network whose links represent interactions between individual proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural fluctuations in different realizations. For biologically-relevant growth rates, the node degree distribution has an algebraic tail with a peculiar rate dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1; reference added and minor rewording of the first paragraph; Title change and major reorganization (but no result changes) in response to referee comments; to be published in PR

    Characterization of hair-follicle side population cells in mouse epidermis and skin tumors.

    Get PDF
    A subset of cells, termed side-population (SP), which have the ability to efflux Hoeschst 33342, have previously been demonstrated to act as a potential method to isolate stem cells. Numerous stem/progenitor cells have been localized in different regions of the mouse hair follicle (HF). The present study identified a SP in the mouse HF expressing the ABCG2 transporter and MTS24 surface marker. These cells are restricted to the upper isthmus of the HF and have previously been described as progenitor cells. Consistent with their SP characteristic, they demonstrated elevated expression of ABCG2 transporter, which participates in the dye efflux. Analysis of tumor epidermal cell lines revealed a correlation between the number of SP keratinocytes and the grade of malignancy, suggesting that the SP may play a role in malignant progression. Consistent with this idea, the present study observed an increased number of cells expressing ABCG2 and MTS24 in chemically induced skin tumors and skin tumor cell lines. This SP does not express the CD34 surface marker detected in the multipotent stem cells of the bulge region of the HF, which have been defined as tumor initiation cells. The present study concluded that a SP with properties of progenitor cells is localized in the upper isthmus of the HF and is important in mouse skin tumor progression

    Simulation of quantum random walks using interference of classical field

    Full text link
    We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters and photodetectors. Our model enables us to simulate a quantum random walk with use of the wave nature of classical light fields. Furthermore, the proposed set-up allows the analysis of the effects of decoherence. The transition from a pure mean photon-number distribution to a classical one is studied varying the decoherence parameters.Comment: extensively revised version; title changed; to appear on Phys. Rev.

    Hadronic Charmed Meson Decays Involving Tensor Mesons

    Full text link
    Charmed meson decays into a pseudoscalar meson P and a tensor meson T are studied. The charm to tensor meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the Cabibbo-allowed decay Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+ is dominated by the W-annihilation contribution and has the largest branching ratio in DTPD\to TP decays. We argue that the Cabibbo-suppressed mode D+f2(1270)π+D^+\to f_2(1270)\pi^+ should be suppressed by one order of magnitude relative to Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+. When the finite width effect of the tensor resonances is taken into account, the decay rate of DTPD\to TP is generally enhanced by a factor of 232\sim 3. Except for Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+, the predicted branching ratios of DTPD\to TP decays are in general too small by one to two orders of magnitude compared to experiment. However, it is very unlikely that the DTD\to T transition form factors can be enhanced by a factor of 353\sim 5 within the ISGW quark model to account for the discrepancy between theory and experiment. As many of the current data are still preliminary and lack sufficient statistic significance, more accurate measurements are needed to pin down the issue.Comment: 11 page

    Comparison of CDMS [100] and [111] oriented germanium detectors

    Full text link
    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3" diameter ×\times 1" thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors and comparison of energy in each channel provides event-by-event classification of electron and nuclear recoils. Fiducial volume is determined by the ability to obtain good phonon and ionization signal at a particular location. Due to electronic band structure in germanium, electron mass is described by an anisotropic tensor with heavy mass aligned along the symmetry axis defined by the [111] Miller index (L valley), resulting in large lateral component to the transport. The spatial distribution of electrons varies significantly for detectors which have their longitudinal axis orientations described by either the [100] or [111] Miller indices. Electric fields with large fringing component at high detector radius also affect the spatial distribution of electrons and holes. Both effects are studied in a 3 dimensional Monte Carlo and the impact on fiducial volume is discussed.Comment: Low Temperature Detector 14 conference proceedings to be published in the Journal of Low Temperature Physic

    A Geometric Fractal Growth Model for Scale Free Networks

    Full text link
    We introduce a deterministic model for scale-free networks, whose degree distribution follows a power-law with the exponent γ\gamma. At each time step, each vertex generates its offsprings, whose number is proportional to the degree of that vertex with proportionality constant m-1 (m>1). We consider the two cases: first, each offspring is connected to its parent vertex only, forming a tree structure, and secondly, it is connected to both its parent and grandparent vertices, forming a loop structure. We find that both models exhibit power-law behaviors in their degree distributions with the exponent γ=1+ln(2m1)/lnm\gamma=1+\ln (2m-1)/\ln m. Thus, by tuning m, the degree exponent can be adjusted in the range, 2<γ<32 <\gamma < 3. We also solve analytically a mean shortest-path distance d between two vertices for the tree structure, showing the small-world behavior, that is, dlnN/lnkˉd\sim \ln N/\ln {\bar k}, where N is system size, and kˉ\bar k is the mean degree. Finally, we consider the case that the number of offsprings is the same for all vertices, and find that the degree distribution exhibits an exponential-decay behavior

    Sterile neutrino production via active-sterile oscillations: the quantum Zeno effect

    Get PDF
    We study several aspects of the kinetic approach to sterile neutrino production via active-sterile mixing. We obtain the neutrino propagator in the medium including self-energy corrections up to O(GF2)\mathcal{O}(G^2_F), from which we extract the dispersion relations and damping rates of the propagating modes. The dispersion relations are the usual ones in terms of the index of refraction in the medium, and the damping rates are Γ1(k)=Γaa(k)cos2θm(k);Γ2(k)=Γaa(k)sin2θm(k)\Gamma_1(k) = \Gamma_{aa}(k) \cos^2\theta_m(k); \Gamma_2(k) = \Gamma_{aa}(k) \sin^2\theta_m(k) where Γaa(k)GF2kT4\Gamma_{aa}(k)\propto G^2_F k T^4 is the active neutrino scattering rate and θm(k)\theta_m(k) is the mixing angle in the medium. We provide a generalization of the transition probability in the \emph{medium from expectation values in the density matrix}: Pas(t)=sin22θm4[eΓ1t+eΓ2t2e1/2(Γ1+Γ2)tcos(ΔEt)] P_{a\to s}(t) = \frac{\sin^22\theta_m}{4}[e^{-\Gamma_1t} + e^{-\Gamma_2 t}-2e^{-{1/2}(\Gamma_1+\Gamma_2)t} \cos\big(\Delta E t\big)] and study the conditions for its quantum Zeno suppression directly in real time. We find the general conditions for quantum Zeno suppression, which for mskeVm_s\sim \textrm{keV} sterile neutrinos with sin2θ103\sin2\theta \lesssim 10^{-3} \emph{may only be} fulfilled near an MSW resonance. We discuss the implications for sterile neutrino production and argue that in the early Universe the wide separation of relaxation scales far away from MSW resonances suggests the breakdown of the current kinetic approach.Comment: version to appear in JHE

    Equilibrium Properties of A Monomer-Monomer Catalytic Reaction on A One-Dimensional Chain

    Full text link
    We study the equilibrium properties of a lattice-gas model of an A+B0A + B \to 0 catalytic reaction on a one-dimensional chain in contact with a reservoir for the particles. The particles of species AA and BB are in thermal contact with their vapor phases acting as reservoirs, i.e., they may adsorb onto empty lattice sites and may desorb from the lattice. If adsorbed AA and BB particles appear at neighboring lattice sites they instantaneously react and both desorb. For this model of a catalytic reaction in the adsorption-controlled limit, we derive analytically the expression of the pressure and present exact results for the mean densities of particles and for the compressibilities of the adsorbate as function of the chemical potentials of the two species.Comment: 19 pages, 5 figures, submitted to Phys. Rev.
    corecore