273 research outputs found

    On the Role of Higher Twist in Polarized Deep Inelastic Scattering

    Get PDF
    The higher twist corrections hN(x)/Q2h^N(x)/Q^2 to the spin dependent proton and neutron structure functions g1N(x,Q2)g_1^N(x, Q^2) are extracted in a model independent way from experimental data on g1Ng_1^N and found to be non-negligible. It is shown that the NLO QCD polarized parton densities determined from the data on g1, including higher twist effects, are in good agreement with those found earlier from our analysis of the data on g1/F1 and A1 where higher twist effects are negligible. On the contrary, the LO QCD polarized parton densities obtained from the data on g1, including higher twist, differ significantly from our previous results.Comment: 18 pages, latex, 6 figures, final version which will be published in Phys. Rev. D, fig. 5 is changed, misprints in Table 2 are remove

    Polarized parton distributions from NLO QCD analysis of world DIS and SIDIS data

    Full text link
    The combined analysis of polarized DIS and SIDIS data is performed in NLO QCD. The new parametrization on polarized PDFs is constructed. The uncertainties on PDFs and their first moments are estimated applying the modified Hessian method. The especial attention is paid to the impact of novel SIDIS data on the polarized distributions of light sea and strange quarks. In particular, the important question of polarized sea symmetry is studied in comparison with the latest results on this subject

    One-loop chiral amplitudes of Moller scattering process

    Full text link
    The high energy amplitudes of the large angles Moller scattering are calculated in frame of chiral basis in Born and 1-loop QED level. Taking into account as well the contribution from emission of soft real photons the compact relations free from infrared divergences are obtained. The expressions for separate chiral amplitudes contribution to the cross section are in agreement with renormalization group predictions.Comment: 15 pages, 3 figure

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems

    Parton distribution functions and quark orbital motion

    Full text link
    Covariant version of the quark-parton model is studied. Dependence of the structure functions and parton distributions on the 3D quark intrinsic motion is discussed. The important role of the quark orbital momentum, which is a particular case of intrinsic motion, appears as a direct consequence of the covariant description. Effect of orbital motion is substantial especially for polarized structure functions. At the same time, the procedure for obtaining the quark momentum distributions of polarized quarks from the combination of polarized and unpolarized structure functions is suggested.Comment: 17 pages, 2 figures, 1 table. Paper is accepted for publication in Eur.Phys.J.

    Determination of polarized parton distribution functions and their uncertainties

    Full text link
    We investigate the polarized parton distribution functions (PDFs) and their uncertainties by using the world data on the spin asymmetry A_1. The uncertainties of the polarized PDFs are estimated by the Hessian method. The up and down valence-quark distributions are determined well. However, the antiquark distributions have large uncertainties at this stage, and it is particularly difficult to fix the gluon distribution. The \chi^2 analysis produces a positively polarized gluon distribution, but even \Delta g(x)=0 could be allowed according to our uncertainty estimation. In comparison with the previous AAC (Asymmetry Analysis Collaboration) parameterization in 2000, accurate SLAC-E155 proton data are added to the analysis. We find that the E155 data improve the determination of the polarized PDFs, especially the polarized antiquark distributions. In addition, the gluon-distribution uncertainties are reduced due to the correlation with the antiquark distributions. We also show the global analysis results with the condition \Delta g(x)=0 at the initial scale, Q^2=1 GeV^2, for clarifying the error correlation effects with the gluon distribution.Comment: 9 pages, 15 eps figures, REVTeX, FORTRAN package is available at the web site http://www-hs.phys.saga-u.ac.jp/aac.html. Replaced 3 eps figures in Fig.

    Calculation of Chirality Violating Proton Structure Function h1_1(x) in QCD

    Full text link
    The twist-two chirality violating proton structure function h1(x)h_1(x) measurable in the polarized Drell-Yan process is calculated by means of QCD sum rules at intermediate xx, 0.3<x<0.70.3 < x < 0.7 and Q2510GeV2Q^2 \approx 5-10 GeV^2.Comment: 12 pages + 6 figures , LaTeX, preprint LMU-01-94. a few additions to the text; the figures have been added as uuencoded fil

    Relationship of molecular breeding value for beef tenderness with heifer traits through weaning of their first calf

    Get PDF
    Polymorphisms in μ-calpain (CAPN1) that beneficially associate with beef tenderness are reported to antagonistically associate with calving day in beef heifers and post-partum interval to estrus in beef cows. We, therefore, hypothesized that a molecular breeding value for slice shear force, calculated based on CAPN1 and calpastatin (CAST) genotypes, would demonstrate an antagonistic relationship between genomically predicted slice shear force and ordinal calving date in replacement beef heifers. A secondary objective of this study was to evaluate the association of a polymorphism in diacylglycerol O-acyltransferase (DGAT1) with reproductive traits in beef heifers. One hundred eighty-seven MARC III heifers (¼ Angus, ¼ Hereford, ¼ Red Poll, and ¼ Pinzgauer) that had been selectively bred to increase the frequency of these polymorphisms were submitted for monthly ultrasound exams beginning at 333 d of age and continuing until the start of breeding to determine pubertal status. At the last exam before breeding, all antral follicles were counted, and the length and height of each ovary was measured to determine if genomic selection for slice shear force associated with ovarian follicle number. Calving date, calf gender, and calf birth weight were recorded at parturition. Regression analysis of the molecular breeding value for slice shear force of the heifers on ordinal calving date indicated no association between genomic prediction of tenderness and calving date (P = 0.16); however, there was a tendency for age at puberty to be delayed in heifers as genetic merit for tenderness improved (P = 0.09). The results of the present study indicate that within experimental precision, selecting for tenderness using genomic predictions had minimal or no antagonistic association with reproductive performance in heifers. Further analysis of reproductive performance as cows is needed within this population but applying these genetic markers to select for tenderness in steers does not antagonize reproductive traits influencing conception or first calf birth date and birth weight in replacement beef heifers

    Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Full text link
    The third moment d2d_2 of the twist-3 part of the nucleon spin structure function g2g_2 is generalized to arbitrary momentum transfer Q2Q^2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order O(p4){\mathcal{O}}(p^4) and in a unitary isobar model (MAID). We show how to link d2d_2 as well as higher moments of the nucleon spin structure functions g1g_1 and g2g_2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2f_2 which appears in the 1/Q21/Q^2 suppressed term in the twist expansion of the spin structure function g1g_1 for proton and neutron.Comment: 30 pages, 7 figure

    Can the polarization of the strange quarks in the proton be positive ?

    Full text link
    Recently, the HERMES Collaboration at DESY, using a leading order QCD analysis of their data on semi-inclusive deep inelastic production of charged hadrons, reported a marginally positive polarization for the strange quarks in the proton. We argue that a non-negative polarization is almost impossible.Comment: 6 pages, latex, minor changes in the discussion after Eq. (9
    corecore