344 research outputs found
Towards a better understanding of the life cycle of Trypanosoma copemani
Trypanosoma copemani has been found infecting several threatened/endangered marsupial species within Australia and is thought to be a key player in the rapid decline of the woylie (Bettongia penicillata). To better understand the biology and life cycle of this parasite, the growth requirements, and kinetics of infection of two newly described genotypes, T. copemani G1 and G2, were investigated and compared with the T. cruzi strain-10R26 in vitro. Both G1 and G2 were able to infect all four cell lines tested. The number of infected cells where at least one intracellular amastigote of T. copemani G1 and G2 was seen was below 7% and 15% respectively in most cell lines. However, in VERO cells the rate of infection for T. copemani G2 was 70%-approximately seven and two times higher than for G1 and T. cruzi respectively. Despite the higher infection rate, the number of intracellular forms of T. copemani G2 was lower compared with T. cruzi, and intracellular replicating forms were not observed. The capability of T. copemani G2 to infect cells may have important consequences for pathogenicity and suggests it might employ similar strategies to complete its life cycle in the vertebrate host to those seen in T. cruzi
SQUID-based microtesla MRI for in vivo relaxometry of the human brain
SQUID-based MRI (magnetic resonance imaging) at microtesla fields has
developed significantly over the past few years. Here we describe application
of this method for magnetic relaxation measurements in the living human brain.
We report values of the longitudinal relaxation time T1 for brain tissues,
measured in vivo for the first time at microtesla fields. The experiments were
performed at 46 microtesla field using a seven-channel SQUID system designed
for microtesla MRI and MEG. Values of T1, measured for different tissues at
this field, are found to be close (within 5%) to the corresponding values of
the transverse relaxation time T2 at the same field. Implications of this
result for imaging contrast in microtesla MRI are discussed.Comment: To appear in Proceedings of 2008 Applied Superconductivity Conferenc
The mediating role of mood in the relationship between perseverative cognition, sleep and subjective health complaints in music students.
Subjective health complaints (SHC) are frequent in musicians. These complaints may be particularly distressing in this population because they are performance relevant. This paper aims at testing a model positing that (a) perseverative cognition (PC) predicts sleep duration/quality, (b) sleep duration/quality predicts SHC and (c) mood is a mediator of these associations.
Participants were 72 music students (mean age (SD): 22.7 (3.0) years), and the assessment period consisted of seven consecutive days, with a solo performance on the fifth day.
Self-reported total sleep time (TST) and sleep quality were assessed 30 min after wake-up, and objective TST/sleep quality were assessed with an actigraphy watch. PC and mood were measured five times a day. Daily SHC were assessed at 9 p.m.
PC did not significantly predict sleep duration/quality. Self-reported and objective TST and sleep quality were all significantly associated with SHC. Mood played a mediating role in each of these relationships with the exception of objective sleep quality.
The tested model on the association among PC, sleep and SHC and the mediating role of mood received partial support, highlighting the importance of sleep and mood in the emergence of SHC among university music students
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes.
Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture
Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells
Burkholderia cenocepacia is an important pulmonary pathogen in individuals with cystic fibrosis (CF). Infection is often associated with severe pulmonary inflammation, and some patients develop a fatal necrotizing pneumonia and sepsis (‘cepacia syndrome’). The mechanisms by which this species causes severe pulmonary inflammation are poorly understood. Here, we demonstrate that B. cenocepacia BC7, a potentially virulent representative of the epidemic ET12 lineage, binds to tumour necrosis factor receptor 1 (TNFR1) and activates TNFR1-related signalling pathway similar to TNF-α, a natural ligand for TNFR1. This interaction participates in stimulating a robust IL-8 production from CF airway epithelial cells. In contrast, BC45, a less virulent ET12 representative, and ATCC 25416, an environmental B. cepacia strain, do not bind to TNFR1 and stimulate only minimal IL-8 production from CF cells. Further, TNFR1 expression is increased in CF airway epithelial cells compared with non-CF cells. We also show that B. cenocepacia ET12 strain colocaizes with TNFR1 in vitro and in the lungs of CF patients who died due to infection with B. cenocepacia, ET12 strain. Together, these results suggest that interaction of B. cenocepacia , ET12 strain with TNFR1 may contribute to robust inflammatory responses elicited by this organism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73011/1/j.1462-5822.2007.01029.x.pd
The History of Galaxy Formation in Groups: An Observational Perspective
We present a pedagogical review on the formation and evolution of galaxies in
groups, utilizing observational information from the Local Group to galaxies at
z~6. The majority of galaxies in the nearby universe are found in groups, and
galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby
groups (~1 Mpc). This suggests that the group environment may play a role in
the formation of most galaxies. The Local Group, and other nearby groups,
display a diversity in star formation and morphological properties that puts
limits on how, and when, galaxies in groups formed. Effects that depend on an
intragroup medium, such as ram-pressure and strangulation, are likely not major
mechanisms driving group galaxy evolution. Simple dynamical friction arguments
however show that galaxy mergers should be common, and a dominant process for
driving evolution. While mergers between L_* galaxies are observed to be rare
at z < 1, they are much more common at earlier times. This is due to the
increased density of the universe, and to the fact that high mass galaxies are
highly clustered on the scale of groups. We furthermore discus why the local
number density environment of galaxies strongly correlates with galaxy
properties, and why the group environment may be the preferred method for
establishing the relationship between properties of galaxies and their local
density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Borissov
Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation
Frontotemporal dementia (FTD)-causing mutations in the CHMP2B gene lead to the generation of mutant C-terminally truncated CHMP2B. We report that transgenic mice expressing endogenous levels of mutant CHMP2B developed late-onset brain volume loss associated with frank neuronal loss and FTD-like changes in social behaviour. These data are the first to show neurodegeneration in mice expressing mutant CHMP2B and indicate that our mouse model is able to recapitulate neurodegenerative changes observed in FTD. Neuroinflammation has been increasingly implicated in neurodegeneration, including FTD. Therefore, we investigated neuroinflammation in our CHMP2B mutant mice. We observed very early microglial proliferation that develops into a clear pro-inflammatory phenotype at late stages. Importantly, we also observed a similar inflammatory profile in CHMP2B patient frontal cortex. Aberrant microglial function has also been implicated in FTD caused by GRN, MAPT and C9orf72 mutations. The presence of early microglial changes in our CHMP2B mutant mice indicates neuroinflammation may be a contributing factor to the neurodegeneration observed in FTD
Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2
We have measured the spin structure functions g2p and g2d and the virtual
photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0
< Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons
from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is
significantly smaller than the sqrt{R} positivity limit over the measured
range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We
obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The
Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range
0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
Measurements of the -Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n
The structure functions g1p and g1n have been measured over the range 0.014 <
x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV
longitudinally polarized electrons from polarized protons and deuterons. We
find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of
the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all
available data we find at
Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm
0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
- …