10 research outputs found
The Golden meteorite fall: Fireball trajectory, orbit, and meteorite characterization
The Golden (British Columbia, Canada) meteorite fall occurred on October 4, 2021 at 0534 UT with the first recovered fragment (1.3 kg) landing on an occupied bed. The associated fireball was recorded by numerous cameras permitting reconstruction of its trajectory and orbit. The fireball entered the atmosphere at a 54° angle from the horizontal at a speed of 18 km sâ1. The fireball reached a peak brightness of â14, having first become luminous at a height of >84 km and ending at 18 km altitude. Analysis of the infrasonic record of the bolide produced an estimated mass of (Formula presented.) kg while modeling of the fireball light curve suggests an initial mass near 70 kg. The fireball experienced a major flare near 31 km altitude where more than half its mass was lost in the form of dust and gram-sized fragments under a dynamic pressure of 3.3 MPa. The strength and fragmentation behavior of the fireball were similar to those reported for other meteorite-producing fireballs (BoroviÄka et al., 2020). Seven days after the fireball occurred, an additional 0.9 kg fragment was recovered during the second day of dedicated searching guided by initial trajectory and dark flight calculations. Additional searching in the fall and spring of 2021â2022 located no additional fragments. The meteorite is an unbrecciated, low-shock (S2) ordinary chondrite of intermediate composition, typed as an L/LL5 with a grain density of ~3530 k gmâ3, an average bulk density of 3150 kg mâ3 and calculated porosity of ~10%. From noble gas measurements, the cosmic ray exposure age is 25 ± 4 Ma while gas retention ages are all >2 Ga. Short-lived radionuclides and noble gas measurements of the pre-atmospheric size overlap with estimates from infrasound and light curve modeling producing a preferred pre-atmospheric mass of 70â200 kg. The orbit of Golden has a high inclination (23.5°) and is consistent with delivery from the inner main belt. The highest probability (60%) of an origin is from the Hungaria group. We propose that Golden may originate among the background S-type asteroids found interspersed in the Hungaria region. The current collection of 18 L/LLâchondrite orbits shows a strong preference for origins in the inner main belt, suggesting multiple parent bodies may be required to explain the diversity in CRE ages and shock states
Mineralogical and spectroscopic investigation of the Tagish Lake carbonaceous chondrite by X-ray diffraction and infrared reflectance spectroscopy
We have carried out a sample-correlated spectroscopic and mineralogical investigation of samples from seven different collection sites of the Tagish Lake C2 chondrite. Rietveld refinement of high-resolution powder X-ray diffraction (XRD) data was used t
Determination of bulk density for small meteorite fragments via visible light 3-D laser imaging
Bulk density is an important intrinsic property of meteorites, but the necessary bulk volume measurement is difficult to do in a truly nondestructive way. Archimedean methods involving the displacement of a 40-100Όm beads "fluid" are commonly applied, but can encounter systematic errors. Herein, we report a visible light laser imaging technique for the nondestructive measurement of meteorite surface features, allowing for the subsequent assembly of 3-D volumetric models; the method is particularly applicable to small meteorite fragments and to fragile specimens. We have acquired laser image data for 24 fragments from 18 ordinary chondrites, carbonaceous chondrites, and achondrites, with masses ranging from 265.0 to 1.2g. Laser imaging bulk density is consistent between sister fragments of meteorites down to sizes of about 0.5cm3, an order of magnitude smaller than can be reliably measured with Archimedean beads techniques. Uncertainty is less than 2% for fragments >4cm3, and typically between 2 and 4% for small fragments <4cm3. For 10 fragments, 3-D laser imaging volumes are on average 1.3% smaller than those obtained with Archimedean beads. In a wider comparison using 21 meteorite fragments, 3-D laser imaging bulk densities are on average 2.14±2.36% greater than the corresponding Archimedean method literature values for these meteorites. Difficulties in the procedure of 3-D image alignment may lead to a slight overestimation of meteorite bulk density, and so laser imaging-based bulk densities are maximum estimates that can be viewed as being complementary to the minimum bulk density estimates obtained using Archimedean beads methods
Mineralogical and spectroscopic investigation of enstatite chondrites by X-ray diffraction and infrared reflectance spectroscopy
The mineralogy and infrared reflectance spectra of 13 Enstatite (E) chondrite meteorite finds spanning the full range of textural alteration grades in both EL and EH classes have been investigated. Rietveld refinement of high-resolution powder X-ray diffraction (XRD) data was used to determine quantitative major mineral abundances. Sample-correlated mid-infrared (2.0 to 25.0 m; 4500 cm-1 to 400 cm-1) reflectance infrared spectra were collected for each meteorite. Spectral features due to the fundamental lattice vibrations of the silicates, primarily enstatite, dominate the spectra of these meteorites over most of the spectral range investigated. The spectral features related to primary (i.e., pre-terrestrial) mineralogy include fundamental stretching and bending lattice modes (âŒ8.3-25.0 m; 1200-400 cm-1), overtones and combinations of the fundamental modes (âŒ4.5-6.1 m; 2200-1650 cm-1), and the principle Christensen feature (âŒ8.3 m; 1200 cm-1). Terrestrial weathering products including Fe-oxyhydroxides, gypsum, and carbonates occur in most of these meteorites and contribute to some spectral features: particularly an asymmetric feature near âŒ2.6 to 3.8 m (3800 to 2600 cm-1) attributed to adsorbed, hydrogen-bonded, and/or structural OH and H2O, and a feature near âŒ6.2 m (1625 cm-1) attributed to adsorbed, hydrogen-bonded, and/or structural H2O. Modal mineral abundances determined by Rietveld refinement have been used to calculate model grain densities for each meteorite. Bulk magnetic susceptibility measurements combined with modal mineralogy and grain densities reveal a trend toward lower grain density and lower bulk susceptibility with increased terrestrial weathering
Precisely locating the Ordovician equator in Laurentia
The Late Ordovician equatorial zone, like the zone today, had few hurricane-grade storms within 10Âș of the equator, as emphasized by the preservation of massive-bedded Thalassinoides ichnofacies in a trans-Laurentian belt more than 6000 km long, from the southwestern United States to North Greenland. That belt also includes nonamalgamated shell beds dominated by the brachiopod Proconchidium, which would not have been preserved after hurricane-grade storms. The belt lacks such storm-related sedimentary features as rip-up clasts, hummocky cross-stratification, or large channels. In contrast, other contemporaneous Laurentian Thalassinoides facies and shell beds on either side of the belt have been disturbed by severe storms below fair-weather wave base. The position of the biofacies-defined equatorial belt coincides with the Late Ordovician equator deduced from paleomagnetic data from Laurentia, thus providing both a high-precision equatorial location and an independent test of the geocentric axial dipole hypothesis for that time
3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation
Ten splash-form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high-resolution laser digitizer. Despite challenges due to the samples' rounded shapes and pitted surfaces, the images were combined to create 3-D tektite models, which captured surface features with a high fidelity (â30 voxel mm-2) and from which volume could be measured noninvasively. The laser-derived density for the tektites averaged 2.41 ± 0.11 g cm-3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm-3. In addition to their curational value, the 3-D models can be used to calculate the tektites' moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 t
Enhanced nondestructive characterization of ordinary chondrites using complex magnetic susceptibility measurements
Ordinary chondrites have previously been nondestructively characterized using bulk magnetic susceptibility, broadly reflecting their Fe-Ni alloy content. We seek to expand the information that can be recovered from magnetic susceptibility by using the University of Toronto Electromagnetic Induction Spectrometer (UTEMIS) to measure the complex magnetic susceptibility tensor of 20 ordinary chondrites samples in addition to 16 Gao-Guenie (H5) chondrites at 35 frequencies from 90 Hz to 64 kHz, at variable low applied field strengths <10 A m-1. Following removal of the field-dependent component of susceptibility, frequency dependence, in- and out-of-phase components, and bulk magnetic susceptibility were interpreted. Most meteorites showed no frequency-dependent in-phase r