1,204 research outputs found

    Damage evolution in freeze cast metal/ceramic composites exhibiting lamellar microstructures

    Get PDF
    The damage evolution in a single domain aluminium/alumina freeze-cast composite has been examined using 3D X-ray computed tomography (CT). A single domain was extracted and loaded incrementally at an orientation of 45° to the lamellae, with the damage being assessed after each of eight compressive loading steps. Prior to loading, significant damage was observed at the metal-ceramic interface – this is thought to have formed during machining and can be ascribed to weak interfacial bonding associated with the Cu coating applied to the ceramic preform prior to metal infiltration. Further interfacial damage was seen to initiate after loading to 170MPa and to develop with each subsequent load step. Damage was also observed in the ceramic lamellae, with a series of parallel cracks forming across the alumina, perpendicular to the domain orientation.These sets of parallel, intra-lamellae cracks were closely spaced, but initiated independently, with coalescenceonly occurring at higher loads. Both the interfacial and intra-lamellae cracking initiated after loading to 170MPa,with the intra-lamellae cracks propagating into the metal matrix after loading to 240MPa. The cracks in the ceramic lamellae were found to form and develop independent of the interfacial cracks, with discrete crackpaths and morphologies being observed in each case. Despite this, the underlying driving force was the samefor each damage mode, with crack propagation being driven by an elastic-plastic mismatch between the metalmatrix and ceramic lamellae

    Recent developments in unconventional superconductivity theory

    Full text link
    The review of recent developments in the unconventional superconductivity theory is given. In the fist part I consider the physical origin of the Kerr rotation polarization of light reflected from the surface of superconducting Sr2RuO4Sr_2RuO_4. Then the comparison of magneto-optical responses in superconductors with orbital and spin spontaneous magnetization is presented. The latter result is applied to the estimation of the magneto-optical properties of neutral superfluids with spontaneous magnetization. The second part is devoted to the natural optical activity or gyrotropy properties of noncentrosymmetric metals in their normal and superconducting states. The temperature behavior of the gyrotropy coefficient is compared with the temperature behavior of paramagnetic susceptibility determining the noticeable increase of the paramagnetic limiting field in noncentrosymmetric superconductors. In the last chapter I describe the order parameter and the symmetry of superconducting state in the itinerant ferromagnet with orthorhombic symmetry. Finally the Josephson coupling between two adjacent ferromagnet superconducting domains is discussed.Comment: 15 page

    Quantum trajectory perspective of atom-field interaction in attosecond time scale

    Get PDF
    Here the ionization and high harmonic generation in Hydrogen and Helium by using quantum (hydrodynamic) trajectories is analyzed theoretically. The quantum trajectories allow a self-contained treatment of the electron exchange and correlation effects without introducing ad hoc potentials into the Schrodinger equation. Our approach predicts the correct high harmonic spectra and the attosecond pulses generated by the Helium atom beyond the single active electron approximation. It can be used to study complex multi-electron systems and their interaction with laser field of both high and low intensity.Comment: 8 pages, 4 figure

    Flow characterisation for a validation study in high-speed aerodynamics

    Get PDF
    Validation studies are becoming increasingly relevant when investigating complex flow problems in high-speed aerodynamics. These investigations require calibration of numerical models with accurate data from the physical wind tunnel being studied. This paper presents the characterisation process for a joint experimental-computational study to investigate the streamwise corners of a Mach 2.5 channel flow. As well as checks of flow quality typically performed for phenomenological investigations, additional quantitative tests are conducted. The extra care to obtain high quality data and eliminate any systematic errors reveal useful information about the wind tunnel flow. Further important physical insights are gained from designing and conducting wind tunnel tests in conjunction with numerical simulations. Crucially, the close experimental-computational collaboration enabled the identification of secondary flows in the sidewall boundary-layers; these strongly influence the flow in the corner regions, the target of the validation study

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software

    Angelman syndrome in an inbred family

    Get PDF
    Angelman syndrome (AS) is characterized by severe mental retardation, absent speech, puppet-like movements, inappropriate laughter, epilepsy, and abnormal electroencephalogram. The majority of AS patients (≃ 65%) have a maternal deficiency within chromosomal region 15q11-q13, caused by maternal deletion or paternal uniparental disomy (UPD). Approximately 35% of AS patients exhibit neither detectable deletion nor UPD, but a subset of these patients have abnormal methylation at several loci in the 15q11-q13 interval. We describe here three patients with Angelman syndrome belonging to an extended inbred family. High resolution chromosome analysis combined with DNA analysis using 14 marker loci from the 15q11-q13 region failed to detect a deletion in any of the three patients. Paternal UPD of chromosome 15 was detected in one case, while the other two patients have abnormal methylation at D15S9, D15S63, and SNRPN. Although the three patients are distantly related, the chromosome 15q11-q13 haplotypes are different, suggesting that independent mutations gave rise to AS in this family

    Cohort study ON Neuroimaging, Etiology and Cognitive consequences of Transient neurological attacks (CONNECT): Study rationale and protocol

    Get PDF
    Background: Transient ischemic attacks (TIA) are characterized by acute onset focal neurological symptoms and complete recovery within 24hours. Attacks of nonfocal symptoms not fulfilling the criteria for TIA but lacking a clear alternative diagnosis are called transient neurological attacks (TNA). Although TIA symptoms are transient in nature, cognitive complaints may persist. In particular, attacks consisting of both focal and nonfocal symptoms (mixed TNA) have been found to be associated with an increased risk of dementia. We aim to study the prevalence, etiology and risk factors of cognitive impairment after TIA or TNA. Methods/Design: CONNECT is a prospective cohort study on cognitive function after TIA and TNA. In total, 150 patients aged ≤45years with a recent (<7days after onset) TIA or TNA and no history of stroke or dementia will be included. We will classify events as: TIA, nonfocal TNA, or mixed TNA. Known short lasting paroxysmal neurological disorders like migraine aura, seizures and Ménière disease are excluded from the diagnosis of TNA. Patients will complete a comprehensive neuropsychological assessment and undergo MRI <7days after the qualifying event and again after six months. The primary clinical outcomes will be cognitive function at baseline and six months after the primary event. Imaging outcomes include the prevalence and evolution of DWI lesions, white matter hyperintensities and lacunes, as well as resting state networks functionality and white matter microstructural integrity. Differences between types of event and DWI, as well as determinants of both clinical and imaging outcomes, will be assessed. Discussion: CONNECT can provide insight in the prevalence, etiology and risk factors of cognitive impairment after TIA and TNA and thereby potentially identify a new group of patients at increased risk of cognitive impairment

    Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance

    Full text link
    Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north-south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north-south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21-23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun's polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale's law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north-south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun's polar magnetic field in the northern hemisphere.Comment: 24 pages, 12 figures, 2 table

    Supersymmetry with a Chargino NLSP and Gravitino LSP

    Full text link
    We demonstrate that the lightest chargino can be lighter than the lightest neutralino in supersymmetric models with Dirac gaugino masses as well as within a curious parameter region of the MSSM. Given also a light gravitino, such as from low scale supersymmetry breaking, this mass hierarchy leads to an unusual signal where every superpartner cascades down to a chargino that decays into an on-shell W and a gravitino, possibly with a macroscopic chargino track. We clearly identify the region of parameters where this signal can occur. We find it is generic in the context of the R-symmetric supersymmetric standard model, whereas it essentially only occurs in the MSSM when sign(M1) is not equal to sign(M2) = sign(\mu) and tan(beta) is small. We briefly comment on the search strategies for this signal at the LHC.Comment: 27 pages and 16 figure
    • …
    corecore