252 research outputs found

    Can black holes be torn up by phantom dark energy in cyclic cosmology?

    Full text link
    Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde

    Dynamically Warped Theory Space and Collective Supersymmetry Breaking

    Full text link
    We study deconstructed gauge theories in which a warp factor emerges dynamically and naturally. We present nonsupersymmetric models in which the potential for the link fields has translational invariance, broken only by boundary effects that trigger an exponential profile of vacuum expectation values. The spectrum of physical states deviates exponentially from that of the continuum for large masses; we discuss the effects of such exponential towers on gauge coupling unification. We also present a supersymmetric example in which a warp factor is driven by Fayet-Iliopoulos terms. The model is peculiar in that it possesses a global supersymmetry that remains unbroken despite nonvanishing D-terms. Inclusion of gravity and/or additional messenger fields leads to the collective breaking of supersymmetry and to unusual phenomenology.Comment: 28 pages LaTeX, JHEP format, 7 eps figures (v2: reference added

    Equation of State of Oscillating Brans-Dicke Scalar and Extra Dimensions

    Full text link
    We consider a Brans-Dicke scalar field stabilized by a general power law potential with power index nn at a finite equilibrium value. Redshifting matter induces oscillations of the scalar field around its equilibrium due to the scalar field coupling to the trace of the energy momentum tensor. If the stabilizing potential is sufficiently steep these high frequency oscillations are consistent with observational and experimental constraints for arbitrary value of the Brans-Dicke parameter ω\omega. We study analytically and numerically the equation of state of these high frequency oscillations in terms of the parameters ω\omega and nn and find the corresponding evolution of the universe scale factor. We find that the equation of state parameter can be negative and less than -1 but it is not related to the evolution of the scale factor in the usual way. Nevertheless, accelerating expansion is found for a certain parameter range. Our analysis applies also to oscillations of the size of extra dimensions (the radion field) around an equilibrium value. This duality between self-coupled Brans-Dicke and radion dynamics is applicable for ω=1+1/D\omega= -1 + 1/D where D is the number of extra dimensions.Comment: 10 two-column pages, RevTex4, 8 figures. Added clarifying discussions, new references. Accepted in Phys. Rev. D (to appear

    Passing through the bounce in the ekpyrotic models

    Get PDF
    By considering a simplified but exact model for realizing the ekpyrotic scenario, we clarify various assumptions that have been used in the literature. In particular, we discuss the new ekpyrotic prescription for passing the perturbations through the singularity which we show to provide a spectrum depending on a non physical normalization function. We also show that this prescription does not reproduce the exact result for a sharp transition. Then, more generally, we demonstrate that, in the only case where a bounce can be obtained in Einstein General Relativity without facing singularities and/or violation of the standard energy conditions, the bounce cannot be made arbitrarily short. This contrasts with the standard (inflationary) situation where the transition between two eras with different values of the equation of state can be considered as instantaneous. We then argue that the usually conserved quantities are not constant on a typical bounce time scale. Finally, we also examine the case of a test scalar field (or gravitational waves) where similar results are obtained. We conclude that the full dynamical equations of the underlying theory should be solved in a non singular case before any conclusion can be drawn.Comment: 17 pages, ReVTeX 4, 13 figures, minor corrections, conclusions unchange

    Observational constraints on braneworld chaotic inflation

    Get PDF
    We examine observational constraints on chaotic inflation models in the Randall-Sundrum Type II braneworld. If inflation takes place in the high-energy regime, the perturbations produced by the quadratic potential are further from scale-invariance than in the standard cosmology, in the quartic case more or less unchanged, while for potentials of greater exponent the trend is reversed. We test these predictions against a data compilation including the WMAP measurements of microwave anisotropies and the 2dF galaxy power spectrum. While in the standard cosmology the quartic potential is at the border of what the data allow and all higher powers excluded, we find that in the high-energy regime of braneworld inflation even the quadratic case is under strong observational pressure. We also investigate the intermediate regime where the brane tension is comparable to the inflationary energy scale, where the deviations from scale-invariance prove to be greater.Comment: 5 pages RevTeX4 file with three figures incorporated. Minor changes to match version accepted by Physical Review

    Braneworld dynamics with the BraneCode

    Full text link
    We give a full nonlinear numerical treatment of time-dependent 5d braneworld geometry, which is determined self-consistently by potentials for the scalar field in the bulk and at two orbifold branes, supplemented by boundary conditions at the branes. We describe the BraneCode, an algorithm which we designed to solve the dynamical equations numerically. We applied the BraneCode to braneworld models and found several novel phenomena of the brane dynamics. Starting with static warped geometry with de Sitter branes, we found numerically that this configuration is often unstable due to a tachyonic mass of the radion during inflation. If the model admits other static configurations with lower values of de Sitter curvature, this effect causes a violent re-structuring towards them, flattening the branes, which appears as a lowering of the 4d effective cosmological constant. Braneworld dynamics can often lead to brane collisions. We found that in the presence of the bulk scalar field, the 5d geometry between colliding branes approaches a universal, homogeneous, anisotropic strong gravity Kasner-like asymptotic, irrespective of the bulk/brane potentials. The Kasner indices of the brane directions are equal to each other but different from that of the extra dimension.Comment: 38 pages, 10 figure

    Cosmological Effects of Radion Oscillations

    Full text link
    We show that the redshift of pressureless matter density due to the expansion of the universe generically induces small oscillations in the stabilized radius of extra dimensions (the radion field). The frequency of these oscillations is proportional to the mass of the radion and can have interesting cosmological consequences. For very low radion masses mbm_b (mb10100H01032eVm_b\sim10-100 H_0\simeq10^{-32} eV) these low frequency oscillations lead to oscillations in the expansion rate of the universe. The occurrence of acceleration periods could naturally lead to a resolution of the coincidence problem, without need of dark energy. Even though this scenario for low radion mass is consistent with several observational tests it has difficulty to meet fifth force constraints. If viewed as an effective Brans-Dicke theory it predicts ω=1+1D\omega=-1+\frac{1}{D} (DD is the number of extra dimensions), while experiments on scales larger than 1mm1mm imply ω>2500\omega>2500. By deriving the generalized Newtonian potential corresponding to a massive toroidally compact radion we demonstrate that Newtonian gravity is modified only on scales smaller than mb1m_b^{-1}. Thus, these constraints do not apply for mb>103eVm_b>10^{-3} eV (high frequency oscillations) corresponding to scales less than the current experiments (0.3mm0.3mm). Even though these high frequency oscillations can not resolve the coincidence problem they provide a natural mechanism for dark matter generation. This type of dark matter has many similarities with the axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and some additional references include

    Dynamics and perturbations in assisted chaotic inflation

    Get PDF
    On compactification from higher dimensions, a single free massive scalar field gives rise to a set of effective four-dimensional scalar fields, each with a different mass. These can cooperate to drive a period of inflation known as assisted inflation. We analyze the dynamics of the simplest implementation of this idea, paying particular attention to the decoupling of fields from the slow-roll regime as inflation proceeds. Unlike normal models of inflation, the dynamics does not become independent of the initial conditions at late times. In particular, we estimate the density perturbations obtained, which retain a memory of the initial conditions even though a homogeneous, spatially-flat Universe is generated.Comment: 10 pages, revtex, 2 figure

    Cosmological Perturbations in a Big Crunch/Big Bang Space-time

    Full text link
    A prescription is developed for matching general relativistic perturbations across singularities of the type encountered in the ekpyrotic and cyclic scenarios i.e. a collision between orbifold planes. We show that there exists a gauge in which the evolution of perturbations is locally identical to that in a model space-time (compactified Milne mod Z_2) where the matching of modes across the singularity can be treated using a prescription previously introduced by two of us. Using this approach, we show that long wavelength, scale-invariant, growing-mode perturbations in the incoming state pass through the collision and become scale-invariant growing-mode perturbations in the expanding hot big bang phase.Comment: 47 pages, 4 figure
    corecore