32 research outputs found
Prediction of drinking water intake by dairy cows
Mathematical models that predict water intake by drinking, also known as free water intake (FWI), are useful in understanding water supply needed by animals on dairy farms. The majority of extant mathematical models for predicting FWI of dairy cows have been developed with data sets representing similar experimental conditions, not evaluated with modern cows, and often require dry matter intake (DMI) data, which may not be routinely available. The objectives of the study were to (1) develop a set of new empirical models for predicting FWI of lactating and dry cows with and without DMI using literature data, and (2) evaluate the new and the extant models using an independent set of FWI measurements made on modern cows. Random effect meta-regression analyses were conducted using 72 and 188 FWI treatment means with and without dietary electrolyte and daily mean ambient temperature (TMP) records, respectively, for lactating cows, and 19 FWI treatment means for dry cows. Milk yield, DMI, body weight, days in milk, dietary macro-nutrient contents, an aggregate milliequivalent concentration of dietary sodium and potassium (NaK), and TMP were used as potential covariates to the models. A model having positive relationships of DMI, dietary dry matter (DM%), and CP (CP%) contents, NaK, and TMP explained 76% of variability in FWI treatment means of lactating cows. When challenged on an independent data set (n=261), the model more accurately predicted FWI [root mean square prediction error as a percentage of average observed value (RMSPE%)=14.4%] compared with a model developed without NaK and TMP (RMSPE%=17.3%), and all extant models (RMSPE%≥15.7%). A model without DMI included positive relationships of milk yield, DM%, NaK, TMP, and days in milk, and explained 63% of variability in the FWI treatment means and performed well (RMSPE%=17.9%), when challenged on the independent data. New models for dry cows included positive relationships of DM% and TMP along with DMI or body weight. The new models with and without DMI explained 75 and 54% of the variability in FWI treatment means of dry cows and had RMSPE% of 12.8 and 15.2%, respectively, when evaluated with the literature data. The study offers a set of empirical models that can assist in determining drinking water needs of dairy farms
Appearance of choline metabolites in plasma and milk when choline is infused into the abomasum with or without methionine
Four lactating, ruminally cannulated Jersey cows, (mean ± standard deviation) 264 ± 54.2 d in milk and 484 ± 24.1 kg of body weight, were arranged in a 4 × 4 Latin square design to measure the effects of abomasal infusion of choline chloride with or without dl-Met on milk and plasma choline metabolites and plasma AA in cows fed a Met-deficient diet. Cows were randomly assigned to 1 of 4 experimental treatments: (1) control; no supplemental Met or choline (CON), (2) 13 g/d of choline ion delivered via abomasal infusion (CHO), (3) 13 g/d of Met delivered via abomasal infusion (MET), and (4) 13 g/d of choline and 13 g/d of Met delivered via abomasal infusion (CHO + MET). Cows received the same basal diet throughout the experiment, which was formulated to be deficient in Met (−5.0 g of Met using the NASEM, 2021, model). Periods were 7 d in length with d 1 to 2 serving as a wash-out period and cows being infused on d 3 to 7. Milk samples were collected twice daily on d 5 to 7 and were analyzed for fat, true protein, lactose, and choline metabolites including betaine, phosphocholine, and free choline using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Blood samples were collected via venipuncture of the coccygeal vein at 1100, 1300, and 1500 h on d 7 of each period and were analyzed for free AA as well as choline metabolites. Plasma Met increased in response to Met infusion and an interaction with choline and Met infusion was observed in the plasma concentration of branched-chain AA. Cows receiving choline exhibited the greatest Cho yield in milk. Milk phosphocholine yield tended to be highest when both choline and Met were infused