55 research outputs found

    The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome

    Get PDF
    Recent studies have reported that alleles in the premutation range in the FMR1 gene in males result in increased FMR1 mRNA levels and at the same time mildly reduced FMR1 protein levels. Some elderly males with premutations exhibit an unique neurodegenerative syndrome characterized by progressive intention tremor and ataxia. We describe neurohistological, biochemical and molecular studies of the brains of mice with an expanded CGG repeat and report elevated Fmr1 mRNA levels and intranuclear inclusions with ubiquitin, Hsp40 and the 20S catalytic core complex of the proteasome as constituents. An increase was observed of both the number and the size of the inclusions during the course of life, which correlates with the progressive character of the cerebellar tremor/ataxia syndrome in humans. The observations in expanded-repeat mice support a direct role of the Fmr1 gene, by either CGG expansion per se or by mRNA level, in the formation of the inclusions and suggest a correlation between the presence of intranuclear inclusions in distinct regions of the brain and the clinical features in symptomatic premutation carriers. This mouse model will facilitate the possibilities to perform studies at the molecular level from onset of symptoms until the final stage of the disease

    The Persistence Length of a Strongly Charged, Rod-like, Polyelectrolyte in the Presence of Salt

    Full text link
    The persistence length of a single, intrinsically rigid polyelectrolyte chain, above the Manning condensation threshold is investigated theoretically in presence of added salt. Using a loop expansion method, the partition function is consistently calculated, taking into account corrections to mean-field theory. Within a mean-field approximation, the well-known results of Odijk, Skolnick and Fixman are reproduced. Beyond mean-field, it is found that density correlations between counterions and thermal fluctuations reduce the stiffness of the chain, indicating an effective attraction between monomers for highly charged chains and multivalent counterions. This attraction results in a possible mechanical instability (collapse), alluding to the phenomenon of DNA condensation. In addition, we find that more counterions condense on slightly bent conformations of the chain than predicted by the Manning model for the case of an infinite cylinder. Finally, our results are compared with previous models and experiments.Comment: 13 pages, 2 ps figure

    Astroglial-targeted expression of the fragile X CGG repeat premutation in mice yields RAN translation, motor deficits and possible evidence for cell-to-cell propagation of FXTAS pathology

    Get PDF
    The fragile X premutation is a CGG trinucleotide repeat expansion between 55 and 200 repeats in the 5′- untranslated region of the fragile X mental retardation 1 (FMR1) gene. Human carriers of the premutation allele are at risk of developing the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Characteristic neuropathology associated with FXTAS includes intranuclear inclusions in neurons and astroglia. Previous studies recapitulated these histopathological features in neurons in a knock-in mouse model, but without significant astroglial pathology. To determine the role of astroglia in FXTAS, we generated a transgenic mouse line (Gfa2-CGG99-eGFP) that selectively expresses a 99-CGG repeat expansion linked to an enhanced green fluorescent protein (eGFP) reporter in astroglia throughout the brain, including cerebellar Bergmann glia. Behaviorally these mice displayed impaired motor performance on the ladder-rung test, but paradoxically better performance on the rotarod. Immunocytochemical analysis revealed that CGG99- eGFP co-localized with GFAP and S-100ß, but not with NeuN, Iba1, or MBP, indicating that CGG99-eGFP expression is specific to astroglia. Ubiquitin-positive intranuclear inclusions were found in eGFP-expressing glia throughout the brain. In addition, intracytoplasmic ubiquitin-positive inclusions were found outside the nucleus in distal astrocyte processes. Intriguingly, intranuclear inclusions, in the absence of eGFP mRNA and eGFP fluorescence, were present in neurons of the hypothalamus and neocortex. Furthermore, intranuclear inclusions in both neurons and astrocytes displayed immunofluorescent labeling for the polyglycine peptide FMRpolyG, implicating FMRpolyG in the pathology found in Gfa2-CGG99 mice. Considered together, these results show that Gfa2-CGG99 expression in mice is sufficient to induce key features of FXTAS pathology, including formation of intranuclear inclusions, translation of FMRpolyG, and deficits in motor function

    Micromechanics of Single Supercoiled DNA Molecules

    Full text link
    Abstract. The theory of the mechanical response of single DNA molecules un-der stretching and twisting stresses is reviewed. Using established results for the the semiflexible polymer including the effect of torsional stress, and for the free energy of plectonemic supercoils, a theory of coexisting plectonemic and extended DNA is con-structed and shown to produce phenomena observed experimentally. Analytical results for DNA extension and torque are presented, and effects of anharmonicities in the plec-tonemic free energy are described. An application of the theory to the problem of torsional-stress-induced cruciform extrusion is also discussed. Key words. DNA, molecular biology, statistical mechanics, polymer physics. AMS(MOS) subject classifications. 82D60, 92C05, 92C40

    Syndrome FXTAS

    No full text
    • …
    corecore