1,026 research outputs found

    Flume experiments on bedforms and structures at the dune-plane bed transition

    Get PDF
    A tiltable, recirculating flume, 18 metres long and 76 cm. wide was used to investigate bedforms and structures near the transition between dunes and a plane bed for a moderately sorted, coarse sand. At Froude numbers ranging from about 0.4 to 1.0, three dune types developed: (1) asymmetrical (triangular) dunes, (2) convex (symmetrical) dunes and (3) humpback (whaleback) dunes. Asymmetrical dunes had gentle, long stoss sides and steep, short lee sides and contained cross-stratification with a maximum dip mostly about 30 degrees to 35 degrees. Flow separation and avalanching were strongly developed to the lee of these dunes. Convex dunes formed when the bed was thin and had longitudinal profiles that were convex-upward with stoss and lee sides of equal steepness. Internal cross-beds were likewise convex and formed from draping of sediment over the lee sides rather than from avalanching. Humpback dunes were the most distinctive bedforms in that on each dune profile the point of maximum elevation was offset from the top of the foreset (avalanche) slope. Immediately downstream from this maximum point, low-angle topset bedding merged uninterruptedly into steep foreset beds and these into bottomsets, producing sigmoidal bedding inside each dune. Although foreset slopes were much shorter in humpback dunes than in asymmetrical, their streepness remained mostly about 30 degrees to 35 degrees right up to the change to a plane bed at a Froude number of about 1.1. For one other run a plane bed also formed but at a Froude number of about 1.7, a rather high value for a plane bed just beyond the dune bed phase. This second plane bed may be that which occurs at Froude numbers larger than those for in-phase waves

    In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography

    Get PDF
    Background and aims: Positron emission tomography (PET) using 18F labelled 2-fluoro-2-deoxy-D-glucose (18FDG) is an established imaging tool, although the recent development of a biologically stable thymidine analogue [18F] 3'-deoxy-3-fluorothymidine (18FLT) has allowed PET to image cellular proliferation by utilising the salvage pathway of DNA synthesis. In this study, we have compared uptake of 18FLT and 18FDG with MIB-1 immunohistochemistry to evaluate the role of PET in quantifying in vivo cellular proliferation in colorectal cancer (CRC). Patients and methods: Patients with resectable, primary, or recurrent CRC were prospectively studied. Thirteen lesions from 10 patients (five males, five females), median age 68 years (range 54–87), were evaluated. Patients underwent 18FDG and 18FLT PET scanning. Tracer uptake within lesions was quantified using standardised uptake values (SUVs). Histopathological examination and MIB-1 immunohistochemistry were performed on all lesions, and proliferation quantified by calculating a labelling index (% of MIB-1 positively stained nuclei within 1500 tumour cells). Results: Histology confirmed adenocarcinoma in 12 of 13 lesions; the remaining lesion was reactive. All eight extrahepatic lesions were visualised using both 18FLT and 18FDG. Three of the five resected liver metastases were also avid for 18FLT and showed high proliferation, while the remaining two lesions which demonstrated no uptake of 18FLT had correspondingly very low proliferation. There was a statistically significant positive correlation (r =0.8, p<0.01) between SUVs of the tumours visualised with 18FLT and the corresponding MIB-1 labelling indices. No such correlation was demonstrated with 18FDG avid lesions (r =0.4). Conclusions: 18FLT PET correlates with cellular proliferation markers in both primary and metastatic CRC. This technique could provide a mechanism for in vivo grading of malignancy and early prediction of response to adjuvant chemotherapy

    Religious diversity, empathy, and God images : perspectives from the psychology of religion shaping a study among adolescents in the UK

    Get PDF
    Major religious traditions agree in advocating and promoting love of neighbour as well as love of God. Love of neighbour is reflected in altruistic behaviour and empathy stands as a key motivational factor underpinning altruism. This study employs the empathy scale from the Junior Eysenck Impulsiveness Questionnaire to assess the association between empathy and God images among a sample of 5993 religiously diverse adolescents (13–15 years old) attending state maintained schools in England, Northern Ireland, Scotland, Wales, and London. The key psychological theory being tested by these data concerns the linkage between God images and individual differences in empathy. The data demonstrate that religious identity (e.g. Christian, Muslim) and religious attendance are less important than the God images which young people hold. The image of God as a God of mercy is associated with higher empathy scores, while the image of God as a God of justice is associated with lower empathy scores

    Internal consistency reliability and construct validity of the Attitude toward Muslim Proximity Index (AMPI): a measure of social distance

    Get PDF
    The Attitude toward Muslim Proximity Index (AMPI) is a six-item scale that uses tolerance to different degrees of social distance to assess prejudice towards Muslims. It was tested on 1777 teenage school children from northern England who indicated their religion as either 'Christian' or 'no religion', and demonstrated good internal reliability (Cronbach's alpha = .81). The index was higher among pupils who supported the views of the British National Party and among those who believed that British Muslims should adopt Western culture; but lower among those who knew Muslims or had Muslim friends. The AMPI is a useful measure of Islamophobic attitudes that does not rely on responses to specific events or on detailed knowledge of the Muslim religion

    On Four-Point Functions of Half-BPS Operators in General Dimensions

    Full text link
    We study four-point correlation functions of half-BPS operators of arbitrary weight for all dimensions d=3,4,5,6 where superconformal theories exist. Using harmonic superspace techniques, we derive the superconformal Ward identities for these correlators and present them in a universal form. We then solve these identities, employing Jack polynomial expansions. We show that the general solution is parameterized by a set of arbitrary two-variable functions, with the exception of the case d=4, where in addition functions of a single variable appear. We also discuss the operator product expansion using recent results on conformal partial wave amplitudes in arbitrary dimension.Comment: The discussion of the case d=6 expanded; references added/correcte

    Cell morphology drives spatial patterning in microbial communities

    Get PDF
    The clearest phenotypic characteristic of microbial cells is their shape, but we do not understand how cell shape affects the dense communities, known as biofilms, where many microbes live. Here, we use individual-based modeling to systematically vary cell shape and study its impact in simulated communities. We compete cells with different cell morphologies under a range of conditions and ask how shape affects the patterning and evolutionary fitness of cells within a community. Our models predict that cell shape will strongly influence the fate of a cell lineage: we describe a mechanism through which coccal (round) cells rise to the upper surface of a community, leading to a strong spatial structuring that can be critical for fitness. We test our predictions experimentally using strains of Escherichia coli that grow at a similar rate but differ in cell shape due to single amino acid changes in the actin homolog MreB. As predicted by our model, cell types strongly sort by shape, with round cells at the top of the colony and rod cells dominating the basal surface and edges. Our work suggests that cell morphology has a strong impact within microbial communities and may offer new ways to engineer the structure of synthetic communities

    Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    Get PDF
    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VG expression (P!0.05) and VGF promoter activity (P!0.0001). Similarly, treatment with 1,25-ihydroxyvitamin D3 increased endogenous VGF mRNA expression (P!0.05) and VGF promoter activity (P!0.0001),whereas triiodothyronine (T3) decreased both (P!0.01 and P!0.0001). Finally, intrahypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure

    What is 3C 324?

    Get PDF
    We report ground based and HST observations of the z=1.206 radio galaxy 3C 324, a prototypical example of the radio-optical ``alignment effect.'' While infrared images shows a simple, round object reminiscent of a giant elliptical galaxy, the HST images reveal a spectacular, linear chain of UV-bright subcomponents closely aligned with the radio axis. In light of the available data, we consider various scenarios to explain the properties of 3C 324, as well as evidence for the presence of dust which may obscure the central active nucleus and scatter its light to produce the polarized, aligned continuum seen in the rest-frame UV.Comment: 9 pages, uuencoded gzipped postscript. To appear in ``Galaxies in the Young Universe,'' ed. H. Hippelein, Springer Verlag. Revised version (hopefully) corrects postscript error which garbled the last pag

    Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Get PDF
    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of ‘innate scatter’ and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated

    A new method for quantifying anisotropic martensitic transformation strains accumulated during constrained cooling

    Get PDF
    Martensitic phase transformations during welding can play a major role in determining the final residual stresses and they can be anisotropic if the transformation occurs under stress. Traditionally, the Satoh test has been used to quantify the response, but it suffers from the fact that the temperature is not uniform along the specimen length, making it difficult to interpret the data. This shortcoming is overcome in our new experimental method using digital image correlation (DIC) to quantify the temperature dependent evolution of the transformation strain locally both parallel and perpendicular to an applied load, in this case for a high-strength low alloy (HSLA) steel and a tough, low transformation temperature weld consumable designed to mitigate tensile weld residual stresses. The method is able to separate the volumetric component of the transformation strain from the deviatoric transformation plasticity component. The volumetric component is shown to be independent of applied load, while the deviatoric component varies approximately linearly with applied load. For the HSLA steel studied here the method also reveals that the transformation start temperature rises under both tensile and compressive loading, confirming previous work. From a weld modelling viewpoint our method provides sufficient information to include the stress dependency of the anisotropic transformation strain in numerical finite element models of the weld process
    corecore