843 research outputs found

    Viewing the efficiency of chaos control

    Full text link
    This paper aims to cast some new light on controlling chaos using the OGY- and the Zero-Spectral-Radius methods. In deriving those methods we use a generalized procedure differing from the usual ones. This procedure allows us to conveniently treat maps to be controlled bringing the orbit to both various saddles and to sources with both real and complex eigenvalues. We demonstrate the procedure and the subsequent control on a variety of maps. We evaluate the control by examining the basins of attraction of the relevant controlled systems graphically and in some cases analytically

    Discrete molecular dynamics simulations of peptide aggregation

    Get PDF
    We study the aggregation of peptides using the discrete molecular dynamics simulations. At temperatures above the alpha-helix melting temperature of a single peptide, the model peptides aggregate into a multi-layer parallel beta-sheet structure. This structure has an inter-strand distance of 0.48 nm and an inter-sheet distance of 1.0 nm, which agree with experimental observations. In this model, the hydrogen bond interactions give rise to the inter-strand spacing in beta-sheets, while the Go interactions among side chains make beta-strands parallel to each other and allow beta-sheets to pack into layers. The aggregates also contain free edges which may allow for further aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure

    Contact Interactions and Resonance-Like Physics at Present and Future Colliders from Unparticles

    Get PDF
    High scale conformal physics can lead to unusual unparticle stuff at our low energies. In this paper we discuss how the exchange of unparticles between Standard Model fields can lead to new contact interaction physics as well as a pseudoresonance-like structure, an unresonance, that might be observable at the Tevatron or LHC in, e.g., the Drell-Yan channel. The specific signatures of this scenario are quite unique and can be used to easily identify this new physics given sufficient integrated luminosity.Comment: 20 pages, 10 figs; minor text changes, ref added; typos correcte

    Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection

    Get PDF
    Plasmonic nanolasers and spasers continue to attract a great deal of interest from the physics and nanophotonics community, with the experimental observation of lasing as a focus of research. We report the observation of continuous wave lasing in metallic cavities of deep subwavelength sizes under electrical injection, operating at room temperature. The volume of the nanolaser is as small as 0.42¿3, where ¿ = 1.55 µm is the lasing wavelength. This demonstration will help answer the question of how small a nanolaser can be made, and will likely stimulate a wide range of fundamental studies in basic laser physics and quantum optics on truly subwavelength scales. In addition, such nanolasers may lead to many potential applications, such as on-chip integrated photonic systems for communication, computing, and detection

    Non-magnetic impurity scattering in a dx2y2d_{x^2 - y^2} superconductor near a van Hove point: Zn versus Ni in the cuprates

    Full text link
    We consider the effect of non-magnetic impurities in a dx2y2d_{x^2 - y^2} superconductor with \ef close to a van Hove singularity. It is shown that the non-trivial density of states (DOS) allows for resonant scattering already at intermediate potential strengths u12|u| \approx 1-2eV. The residual DOS at \ef, and the \tc suppression rate are found to strongly depend on the carrier concentration. Quantitative agreement with experiments on Zn and Ni doped cuprates is obtained by adjusting a single parameter, uu.Comment: 4 pages uuencoded compressed Postscript (Minor changes

    Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria

    Full text link
    Phenylketonuria (PKU) is caused by hepatic phenylalanine hydroxylase (PAH) deficiency and is associated with systemic accumulation of phenylalanine (Phe). Previously we demonstrated correction of murine PKU after intravenous injection of a recombinant type 2 adeno-associated viral vector pseudotyped with type 8 capsid (rAAV2/8), which successfully directed hepatic transduction and Pah gene expression. Here, we report that liver PAH activity and phenylalanine clearance were also restored in PAH-deficient mice after simple intramuscular injection of either AAV2 pseudotype 1 (rAAV2/1) or rAAV2/8 vectors. Serotype 2 AAV vector (rAAV2/2) was also investigated, but long-term phenylalanine clearance has been observed only for pseudotypes 1 and 8. Therapeutic correction was shown in both male and female mice, albeit more effectively in males, in which correction lasted for the entire period of the experiment (>1 year). Although phenylalanine levels began to rise in female mice at about 8-10 months after rAAV2/8 injection they remained only mildly hyperphenylalaninemic thereafter and subsequent supplementation with synthetic tetrahydrobiopterin resulted in a transient decrease in blood phenylalanine. Alternatively, subsequent administration of a second vector with a different AAV pseudotype to avoid immunity against the previously administrated vector was also successful for long-term treatment of female PKU mice. Overall, this relatively less invasive gene transfer approach completes our previous studies and allows comparison of complementary strategies in the development of efficient PKU gene therapy protocols

    Unparticles-Higgs Interplay

    Get PDF
    We show that scalar unparticles coupled to the Standard Model Higgs at the renormalizable level can have a dramatic impact in the breaking of the electroweak symmetry already at tree level. In particular one can get the proper electroweak scale without the need of a Higgs mass term in the Lagrangian. By studying the mixed unparticle-Higgs propagator and spectral function we also show how unparticles can shift the Higgs mass away from its Standard Model value, \lambda v^2, and influence other Higgs boson properties. Conversely, we study in some detail how electroweak symmetry breaking affects the unparticle sector by breaking its conformal symmetry and generating a mass gap. We also show that, for Higgs masses above that gap, unparticles can increase quite significantly the Higgs width.Comment: 14 pages, 7 figures, typos correcte

    B \to K(K^*) missing energy in Unparticle physics

    Full text link
    In the present work we study the effects of an unparticle \unpart as the possible source of missing energy in the decay BK(K)+missingenergyB \to K (K^*) + {\rm missing energy}. We find that the dependence of the differential branching ratio on the KK(KK^*)-meson's energy in the presence of the vector unparticle operators is very distinctive from that of the SM. Moreover, in using the existing upper bound on BK(K)+missingenergyB \to K (K^*) + {\rm missing energy} decays, we have been able to put more stringent constraints on the parameters of unparticle stuff.Comment: 13 pages, 5 figure

    Origin of the photoemission final-state effects in Bi2Sr2CaCu2O8 by very-low-energy electron diffraction

    Full text link
    Very-low-energy electron diffraction with a support of full-potential band calculations is used to achieve the energy positions, K// dispersions, lifetimes and Fourier compositions of the photoemission final states in Bi2Sr2CaCu2O8 at low excitation energies. Highly structured final states explain the dramatic matrix element effects in photoemission. Intense c(2x2) diffraction reveals a significant extrinsic contribution to the shadow Fermi surface. The final-state diffraction effects can be utilized to tune the photoemission experiment on specific valence states or Fermi surface replicas.Comment: 4 pages, 3 Postscript figures, submitted to Phys. Rev. Lett; major revision
    corecore