1,891 research outputs found
Statistics of level spacing of geometric resonances in random binary composites
We study the statistics of level spacing of geometric resonances in the
disordered binary networks. For a definite concentration within the
interval , numerical calculations indicate that the unfolded level
spacing distribution and level number variance have the
general features. It is also shown that the short-range fluctuation and
long-range spectral correlation lie between the profiles of the
Poisson ensemble and Gaussion orthogonal ensemble (GOE). At the percolation
threshold , crossover behavior of functions and is
obtained, giving the finite size scaling of mean level spacing and
mean level number , which obey the scaling laws, and .Comment: 11 pages, 7 figures,submitted to Phys. Rev.
Screening of Dirac flavor structure in the seesaw and neutrino mixing
We consider the mechanism of screening of the Dirac flavor structure in the
context of the double seesaw mechanism. As a consequence of screening, the
structure of the light neutrino mass matrix, m_\nu, is determined essentially
by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck
scale) neutral fermions S. We calculate effects of the renormalization group
running in order to investigate the stability of the screening mechanism with
respect to radiative corrections. We find that screening is stable in the
supersymmetric case, whereas in the standard model it is unstable for certain
structures of M_S. The screening mechanism allows us to reconcile the
(approximate) quark-lepton symmetry and the strong difference of the mixing
patterns in the quark and lepton sectors. It opens new possibilities to explain
a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and
quark-lepton complementarity. Screening can emerge from certain flavor
symmetries or Grand Unification.Comment: 27 pages, 3 figures; references added, discussion of the E6 model
modifie
The Three Families from SM-like Chiral Models
We give a detailed description of the model construction procedures about our
new approach to the family structure of the standard model. SM-like chiral
fermion spectra, largely "derivable" from the gauge anomaly constraints, are
formulated in a symmetry
framework as an extension of the SM symmetry. The case gives naturally
three families as a result, with nontrivially embedded into the
. Such a spectrum has extra vector-like quarks and
leptons. We illustrate how an acceptable symmetry breaking pattern can be
obtained through a relatively simple scalar sector which gives naturally
hierarchical quark mass matrices. Compatibility with various FCNC constraints
and some interesting aspects of the possible phenomenological features are
discussed, from a non-model specific perspective. The question of incorporating
supersymmetry without putting in the Higgses as extra supermultiplet is also
addressed.Comment: 43 pages RevTex, including 9 tables and 3 figure
The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance
Bactericidal activity of traditional titanium dioxide (TiO2) photocatalyst is effective only upon irradiation by ultraviolet light, which restricts the potential applications of TiO2 for use in our living environments. Recently carbon-containing TiO2 was found to be photoactive at visible-light illumination that affords the potential to overcome this problem; although, the bactericidal activity of these photocatalysts is relatively lower than conventional disinfectants. Evidenced from scanning electron microscopy and confocal Raman spectral mapping analysis, we found the interaction with bacteria was significantly enhanced in these anatase/rutile mixed-phase carbon-containing TiO2. Bacteria-killing experiments indicate that a significantly higher proportion of all tested pathogens including Staphylococcus aureus, Shigella flexneri and Acinetobacter baumannii, were eliminated by the new nanoparticle with higher bacterial interaction property. These findings suggest the created materials with high bacterial interaction ability might be a useful strategy to improve the antimicrobial activity of visible-light-activated TiO2
Effects of decoherence and errors on Bell-inequality violation
We study optimal conditions for violation of the Clauser-Horne-Shimony-Holt
form of the Bell inequality in the presence of decoherence and measurement
errors. We obtain all detector configurations providing the maximal Bell
inequality violation for a general (pure or mixed) state. We consider local
decoherence which includes energy relaxation at the zero temperature and
arbitrary dephasing. Conditions for the maximal Bell-inequality violation in
the presence of decoherence are analyzed both analytically and numerically for
the general case and for a number of important special cases. Combined effects
of measurement errors and decoherence are also discussed.Comment: 18 pages, 5 figure
Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops
We discuss how to extract renormalized from bare Polyakov loops in SU(N)
lattice gauge theories at nonzero temperature in four spacetime dimensions.
Single loops in an irreducible representation are multiplicatively renormalized
without mixing, through a renormalization constant which depends upon both
representation and temperature. The values of renormalized loops in the four
lowest representations of SU(3) were measured numerically on small, coarse
lattices. We find that in magnitude, condensates for the sextet and octet loops
are approximately the square of the triplet loop. This agrees with a large
expansion, where factorization implies that the expectation values of loops in
adjoint and higher representations are just powers of fundamental and
anti-fundamental loops. For three colors, numerically the corrections to the
large relations are greatest for the sextet loop, ; these
represent corrections of for N=3. The values of the renormalized
triplet loop can be described by an SU(3) matrix model, with an effective
action dominated by the triplet loop. In several ways, the deconfining phase
transition for N=3 appears to be like that in the matrix model of
Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion
for clarity, results unchange
Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling: a case study
The objective of this study is to compare the abilities of logistic, auto-logistic and artificial neural network (ANN) models for quantifying the relationships between land uses and their drivers. In addition, the application of the results obtained by the three techniques is tested in a dynamic land-use change model (CLUE-s) for the Paochiao watershed region in Taiwan. Relative operating characteristic curves (ROCs), kappa statistics, multiple resolution validation and landscape metrics were used to assess the ability of the three techniques in estimating the relationship between driving factors and land use and its subsequent application in land-use change models. The validation results illustrate that for this case study ANNs constitute a powerful alternative for the use of logistic regression in empirical modeling of spatial land-use change processes. ANNs provide in this case a better fit between driving factors and land-use pattern. In addition, auto-logistic regression performs better than logistic regression and nearly as well as ANNs. Auto-logistic regression and ANNs are considered especially useful when the performance of more conventional models is not satisfactory or the underlying data relationships are unknown. The results indicate that an evaluation of alternative techniques to specify relationships between driving factors and land use can improve the performance of land-use change models
Asymmetric weak-pinning superconducting channels: Vortex ratchets
Quantum Matter and Optic
- …