164 research outputs found

    New Structures of Continuous Functions

    Get PDF
    الدوال المستمرة هي مفاهيم جديدة في الطوبولوجيا. ساهم العديد من الطوبولوجيين في نظرية الوظائف المستمرة في الطوبولوجيا. واصل المؤلفون الحاليون الدراسة حول الوظائف المستمرة من خلال استخدام مفهوم مجموعات gpα المغلقة في الطوبولوجيا وقدموا مفاهيم الوظائف الضعيفة والضعيفة والمتواصلة تقريبًا. علاوة على ذلك، يتم إنشاء خصائص هذه الوظائف.         Continuous functions are novel concepts in topology. Many topologists contributed to the theory of continuous functions in topology. The present authors continued the study on continuous functions by utilizing the concept of gpα-closed sets in topology and introduced the concepts of weakly, subweakly and almost continuous functions. Further, the properties of these functions are established

    Pairwise Paracompactness

    Get PDF
    The purpose of this paper is to introduce and study a new paracompactness in bitopological spaces using (τi, τj)-g∗ωα-closed sets. Further, the properties of (τi, τj)-g∗ωα-closed sets, (τi, τj)-g∗ωα- continuous functions and (τi, τj)-g∗ωα-irresolute maps and (τi, τj)- g∗ωα-paracompact spaces are discussed in bitopological spaces.

    Setting Up Personal Cloud Server Tonido @ Department of Computer Studies, CSIBER and Integration with Moodle Server - A Case Study

    Get PDF
    Cloud computing represents a real paradigm shift in the way softwares are developed, deployed and used. Cloud computing, which is based on utility computing has a remarkable contribution in realizing long held dream of utility computing in achieving the development of infinitely scalable and universally available systems as, with cloud computing user can start very small and become big very fast limited only by his/her needs, which means cloud computing is revolutionary even if the technology it is based on is evolutionary. There is a handful of free open source cloud softwares available which guide an end user from setting up of file server to drive mapping and file synchronization. All these utilities are bundled into a single software module. The authors have performed a survey of different open source softwares currently available on Internet and have performed their relative comparisons. A private file cloud server has been installed in the Department of Computer Studies, CSIBER, Kolhapur, MS, India. For sharing and synchronizing files Tonido cloud software is employed. The security has been implemented using role based authentication wherein all inter and intra department communications are modeled by assigning different roles to the users of the system. The drive mapping is achieved at admin and user level using free add-ons available for Tonido. The folder changes are monitored periodically and notification messages are sent to appropriate users instantly. The cloud server enables stream-lining various house-keeping chores such as uploading notices, syllabi for students and also helps in keeping all the documents centralized, structured and updated. The system has rendered the whole process automatic and there is very little chance for committing any mistake which results in extremely effective communication system between users of different categories. At the OS level, security trimming is performed by programmatically editing requisite registry entries using Group Policy Editor, Microsoft management console program at runtime depending on the user logged in and mapping user credentials to the corresponding drives accessible only to that user. Finally, the Tonido server is integrated with institute’s Moodle server and the data is synchronized with the help of an interface e application implemented in Java. DOI: 10.17762/ijritcc2321-8169.15072

    Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone

    Get PDF
    A macrocyclic hydrazone Schiff base was synthesized by reacting 1,4-dicarbonyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol and a series of metal complexes with this new Schiff base were synthesized by reaction with Co(II), Ni(II) and Cu(II) metal salts. The Schiff base and its complexes have been characterized by elemental analyses, IR, 1H NMR, UV-vis, FAB mass, ESR spectra, fluorescence, thermal, magnetic and molar conductance data. The analytical data reveal that the Co(II), Ni(II) and Cu(II) complexes possess 2:1 metal-ligand ratios. All the complexes are non-electrolytes in DMF and DMSO due to their low molar conductance values. Infrared spectral data suggest that the hydrazone Schiff base behaves as a hexadentate ligand with NON NON donor sequence towards the metal ions. The ESR spectral data shows that the metal-ligand bond has considerable covalent character. The electrochemical behavior of the copper(II) complex was investigated by cyclic voltammetry. The Schiff base and its complexes have also been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Shigella dysentery, Micrococcus, Bacillus subtilis, Bacillus cereus and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Penicillium and Candida albicans) by MIC method. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. © 2009 Elsevier Masson SAS. All rights reserved

    Effects of Radiation and Cold Wall Temperature Boundary Conditions on Natural Convection in a Vertical Annular Porous Medium

    Get PDF
    This paper deals with the numerical solution for natural convection in a vertical annular porous medium for various cold wall temperature boundary conditions and radiation parameters. The heat transfer is assumed to take place by convection and radiation. The inner wall (hot wall) of the annulus is maintained at an isothermal temperature while the outer wall (cold wall) is subjected to different temperature conditions. The temperature conditions maintained at the cold wall are evaluated for uniform as well as non uniform temperatures. The fluid is assumed to obey Darcy’s law. The governing partial differential equations are non-dimensionalised and solved by finite element method. The porous medium is discretised with unstructured triangular elements. The effects of radius ratio and Rayleigh number on the Nusselt number and Sherwood number are investigated on the annulus for different temperatures at cold wall. The effects of radiation on flow patterns, temperature distribution and concentration distribution are discussed. The results reveal that the Nusselt number and Sherwood number at cold wall decrease with the increase in radius ratio, whereas they increase with the radius ratio at hot wall for different temperature boundary conditions at the cold wall. Temperature cold wall conditions have pronounced effect on the Nusselt and Sherwood number

    Comprehensive characterization and validation of chromosome-specific highly polymorphic SSR Markers from Pomegranate (Punica granatum L.) cv. Tunisia Genome

    Get PDF
    The simple sequence repeat (SSR) survey of ‘Tunisia’ genome (296.85 Mb) identified a total of 365,279 perfect SSRs spanning eight chromosomes, with a mean marker density of 1,230.6 SSRs/Mb. We found a positive trend in chromosome length and the SSR abundance as marker density enhanced with a shorter chromosome length. The highest number of SSRs (60,708) was mined from chromosome 1 (55.56 Mb), whereas the highest marker density (1,294.62 SSRs/Mb) was recorded for the shortest chromosome 8 (27.99 Mb). Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. Across the eight chromosomes, the class III had maximum number of SSR motifs (301,684, 82.59%), followed by the class II (31,056, 8.50%) and the class I (5,003, 1.37%). Examination of the distribution of SSR motif types within a chromosome suggested the abundance of hexanucleotide repeats in each chromosome followed by dinucleotides, and these results are consistent with ‘Tunisia’ genome features as a whole. Concerning major repeat types, AT/AG was the most frequent (14.16%), followed by AAAAAT/AAAAAG (7.89%), A/C (7.54%), AAT/AAG (5.23%), AAAT/AAAG (4.37%), and AAAAT/AAAAG (1.2%) types. We designed and validated a total of 3,839 class I SSRs in the ‘Tunisia’ genome through electronic polymerase chain reaction (ePCR) and found 1,165 (30.34%) SSRs producing a single amplicon. Then, we selected 906 highly variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across multiple draft genomes of pomegranate, which provided us a subset of 265 highly polymorphic SSRs. Of these, 235 primers were validated on six pomegranate genotypes through wet-lab experiment. We found 221 (94%) polymorphic SSRs on six genotypes, and 187 of these SSRs had ≥ 0.5 PIC values. The utility of the developed SSRs was demonstrated by analyzing genetic diversity of 30 pomegranate genotypes using 16 HvSSRs spanning eight pomegranate chromosomes. In summary, we developed a comprehensive set of highly polymorphic genome-wide SSRs. These chromosome-specific SSRs will serve as a powerful genomic tool to leverage future genetic studies, germplasm management, and genomics-assisted breeding in pomegranate

    Chromosome-specific potential intron polymorphism markers for large-scale genotyping applications in pomegranate

    Get PDF
    Despite the availability of whole genome assemblies, the identification and utilization of gene-based marker systems has been limited in pomegranate. In the present study, we performed a genome-wide survey of intron length (IL) markers in the 36,524 annotated genes of the Tunisia genome. We identified and designed a total of 8,812 potential intron polymorphism (PIP) markers specific to 3,445 (13.40%) gene models that span 8 Tunisia chromosomes. The ePCR validation of all these PIP markers on the Tunisia genome revealed single-locus amplification for 1,233 (14%) markers corresponding to 958 (27.80%) genes. The markers yielding single amplicons were then mapped onto Tunisia chromosomes to develop a saturated linkage map. The functional categorization of 958 genes revealed them to be a part of the nucleus and the cytoplasm having protein binding and catalytic activity, and these genes are mainly involved in the metabolic process, including photosynthesis. Further, through ePCR, 1,233 PIP markers were assayed on multiple genomes, which resulted in the identification of 886 polymorphic markers with an average PIC value of 0.62. In silico comparative mapping based on physically mapped PIP markers indicates a higher synteny of Tunisia with the Dabenzi and Taishanhong genomes (>98%) in comparison with the AG2017 genome (95%). We then performed experimental validation of a subset of 100 PIP primers on eight pomegranate genotypes and identified 76 polymorphic markers, with 15 having PIC values ≥0.50. We demonstrated the potential utility of the developed markers by analyzing the genetic diversity of 31 pomegranate genotypes using 24 PIP markers. This study reports for the first time large-scale development of gene-based and chromosome-specific PIP markers, which would serve as a rich marker resource for genetic variation studies, functional gene discovery, and genomics-assisted breeding of pomegranate

    Structural, magnetic and electrical properties of single crystalline La_(1-x)Sr_xMnO_3 for 0.4 < x < 0.85

    Full text link
    We report on structural, magnetic and electrical properties of Sr-doped LaMnO_3 single crystals for doping levels 0.4 < x < 0.85. The complex structural and magnetic phase diagram can only be explained assuming significant contributions from the orbital degrees of freedom. Close to x = 0.6 a ferromagnetic metal is followed by an antiferromagnetic metallic phase below 200 K. This antiferromagnetic metallic phase exists in a monoclinic crystallographic structure. Following theoretical predictions this metallic antiferromagnet is expected to reveal an (x^2-y^2)-type orbital order. For higher Sr concentrations an antiferromagnetic insulator is established below room temperature.Comment: 8 pages, 7 figure

    Recognize fish as food in policy discourse and development funding

    Get PDF
    The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture

    Liposomes in Biology and Medicine

    Full text link
    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, liposome-formulated drugs have now entered the clinics to treat cancer and systemic or local fungal infections, mainly because they are biologically inert and biocompatible and practically do not cause unwanted toxic or antigenic reactions. A novel, up-coming and promising therapy approach for the treatment of solid tumors is the depletion of macrophages, particularly tumor associated macrophages with bisphosphonate-containing liposomes. In the advent of the use of genetic material as therapeutic molecules the development of delivery systems to target such novel drug molecules to cells or to target organs becomes increasingly important. Liposomes, in particular lipid-DNA complexes termed lipoplexes, compete successfully with viral gene transfection systems in this field of application. Future DDS will mostly be based on protein, peptide and DNA therapeutics and their next generation analogs and derivatives. Due to their versatility and vast body of known properties liposome-based formulations will continue to occupy a leading role among the large selection of emerging DDS
    corecore