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ABSTRACT 

This paper deals with the numerical solution for natural convection in a vertical annular porous medium for various 

cold wall temperature boundary conditions and radiation parameters. The heat transfer is assumed to take place by 

convection and radiation. The inner wall (hot wall) of the annulus is maintained at an isothermal temperature while 

the outer wall (cold wall) is subjected to different temperature conditions. The temperature conditions maintained at 

the cold wall are evaluated for uniform as well as non uniform temperatures. The fluid is assumed to obey Darcy’s 

law. The governing partial differential equations are non-dimensionalised and solved by finite element method. The 

porous medium is discretised with unstructured triangular elements. The effects of radius ratio and Rayleigh number 

on the Nusselt number and Sherwood number are investigated on the annulus for different temperatures at cold wall. 

The effects of radiation on flow patterns, temperature distribution and concentration distribution are discussed. The 

results reveal that the Nusselt number and Sherwood number at cold wall decrease with the increase in radius ratio, 

whereas they increase with the radius ratio at hot wall for different temperature boundary conditions at the cold wall. 

Temperature cold wall conditions have pronounced effect on the Nusselt and Sherwood numbers. 

 

Keywords: Radiation, convection, numerical method, porous medium, vertical annulus, heat transfer. 

 

NOMENCLATURE 

A        area, m2 

Ar       aspect ratio = 
 

    
 

Avg.   average 

C        concentration factor 

 ̅        non dimensional concentration factor 

Cp      specific heat, J kg-1K-1 

Dp      particle diameter, m 

g        gravitational  acceleration, ms-1 

h        heat transfer co-efficient, Wm-2K-1 

H       height of the annulus, m 

i         inner wall 

K       permeability of porous medium 

Le      Lewis number 

Lref     = (ro-ri) , m 

N        shape function  

Nu.     Nusselt number 

  ̅̅ ̅̅      average Nusselt number 

o        outer wall 

r, z     cylindrical co-ordinates 

 ̅,  ̅    non dimensional cylindrical co-ordinates 

ref      reference 

 

ri        inner radius,  m 

 ̅i       non dimensional inner radius = 
  

    
 

ro       outer radius,  m 

 ̅o      non dimensional outer radius = 
  

    
   

R       radius ratio =  
       

  
      

Re      residue                

Ra      Rayleigh number 

Rd      radiation parameter 

s         solid 

Sh      Sherwood number 

  ̅̅ ̅      average Sherwood number 

T        temperature, K 

T        transpose  

 ̅        non dimensional temperature 

To       temperature at the outer wall, K 

 ̅        non dimensional temperature at outer wall 

Ti       temperature at the inner wall, K 

 ̅        non dimensional temperature at inner wall 

T∞       ambient temperature, K 

u         velocity in ‘r’ direction, m/s 

w        velocity in ‘z’ direction, m/s 
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w     wall 

α      thermal diffusivity, m2s-1 

βc     co-efficient of concentration expansion,K-1 

βR       rosseland extinction co-efficient 

βT     co-efficient of thermal expansion,K-1 

Δ      potential difference 

ν      kinematic viscosity, m2 s-1 

κ      thermal conductivity, Wm-1K-1 

ρ      density,  kg m-3  

λ      power law exponent 

 

Φ     Porosity 

μ      dynamic viscosity, m2 s-1 

σ      Stephan Boltzmann constant 

Ψ     stream function W/m2 K4 

 ̅     non dimensional stream function 

∞     conditions at outer radius 

  

 

1. INTRODUCTION 

In recent years, natural convection, heat and mass 

transfer through porous medium have received 

remarkable interest among the researchers. Porous 

medium plays important role in many geophysical and 

engineering applications such as energy recovery from 

petroleum resources, thermal insulation of buildings, 

chemical reactors, nuclear waste disposal etc. When the 

convection is comparatively small, radiation plays a 

vital role and hence it cannot be neglected. A 

comprehensive literature review on convection in a 

fluid-saturated porous medium may be found in the 

books by Nield and Bejan (1999) and Ingham and Pop 

(2005). Reda (1986) has carried out the experimental 

investigation of a finite vertical cylinder. Here the inner 

cylinder had a finite length heat source whereas the 

outer cylinder was maintained at constant temperature. 

The results showed that the radial temperature drop 

across the annulus was found to systematically depart 

from the finite-length cylinder as heat power was 

increased. Muralidhar (1989) has analyzed the mixed 

convection in a vertical annulus. The study here was 

carried out for height to gap ratio of 10 and outer to 

inner radius ratio of 2. It was noticed that the forced 

convection dominates in the first 10% of entry length 

region. Rajamani et al. (1995) have studied the natural 

convective heat transfer in an annular cylinder 

embedded with porous medium by making use of finite 

element method and discussed the effect of aspect ratio 

and radius ratio of the annulus on the heat transfer rate.  

Hossain and Alim (1997) have investigated the natural 

convection radiation interaction on boundary layer flow 

along vertical cylinder by using local non-similarity 

method and implicit finite difference scheme with 

Keller box elimination method. Raptis (1998) has 

investigated the heat transfer behavior of vertical plate 

in porous medium subjected to constant suction 

velocity. Inspired by electric heating elements, Wang 

(1998) has given a set of critical Rayleigh numbers for 

various size ratios of cylinder at which the convection 

heat transfer starts. Here the bottom surfaces of the 

cylinder were subjected to constant heat flux with the 

side walls being insulated. The effect of radiation on 

natural convection over a vertical cylinder embedded 

with porous medium has been studied by Yih (1999). 

He has employed the finite difference method and has 

presented the dimensionless temperature profile and 

Nu/Ra
1/2 for different parameters. Cherif and Sifaoui 

(2004) have considered radiation along with conduction 

and convection to predict the heat transfer behavior in a 

cylindrical enclosure. The problem of heat transfer in 

saturated porous vertical annulus with combined effect 

of radiation and convection has been studied for the 

case of  ̅ = 0 only by Irfan et al. (2006). Heat transfer 

analysis of porous medium in a conical cylinder with 

variable wall temperature has been carried out by 

Ahmed et al. (2008). They investigated the fluid flow 

behavior in a complex geometry such as conical 

cylinder having variable wall temperature and 

concluded that the effect of cone angle on heat transfer 

behavior is significant. Srivastava and Singh (2010) 

have analyzed the mixed convection in a composite 

system bounded by vertical walls. They concluded that 

the velocity intensifies with the temperature potential 

between walls and reduces with the increase in 

viscosity ratio. The problem of heat transfer in porous 

annular cylinder requires attention as it has many 

practical applications such as gas cooled reactor 

vessels, bio-mass converters, insulated pipe lines etc.  

Yet, to the best knowledge of the authors there appears 

to be no study in the literature concerned with the 

combined effect of natural convection and radiation on 

a saturated vertical annular porous medium with 

different temperature cold wall conditions ( ̅  . The 

work carried out in the past corresponds to the case of 

 ̅ = 0 as observed from the literature. In the present 

work, three case studies have been carried out. The first 

two cases correspond to two uniform non dimensional 

temperatures ( ̅              at the cold wall 

boundary condition for the annulus. In the third case the 

effect of non uniform temperature variation in 

accordance with the power law, along the cold wall of 

the vertical annulus is analyzed.  

The objective of the present work is to study the effect 

of radiation on natural convection, heat and mass 

transfer, when the temperatures boundary conditions at 

the cold wall of the porous annulus are varied. The 

effects of radius ratio and Rayleigh number on the heat 

and mass transfer in terms of average Nusselt number 

and average Sherwood number respectively are 

analyzed. Also their effects on temperature, flow and 

concentration distributions are examined. 

2. MATHEMATICAL FORMULATION 

The In the present study, a saturated vertical porous 

annulus of inner radius (ri) and outer radius (ro) is 

considered. Let the inner wall (hot wall) be at 

temperature Ti and outer wall (cold wall) be at 

temperature To such that To < Ti. The two horizontal 

walls are insulated, thus making them adiabatic. Figure 

1 shows the cross section of the vertical porous annulus 

considered in the present work. 
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Fig. 1. Cross section of the axi- symmetric vertical 

annular porous medium 
 

The r and z co ordinates point towards the radius and 

height of the vertical porous annulus respectively.  

The following assumptions are made in the present 

study: 

a) Porous medium is saturated with fluid 

b) The fluid is assumed to be gray emitting but 

non-scattering 

c) The fluid and medium are in local thermal 

equilibrium in the domain 

d) The porous medium is isotropic and 

homogeneous 

e) Fluid properties are constant except for the 

variation of density 

f) Darcy’s law is assumed for the flow in the 

porous medium 

With these assumptions, the governing equations can be 

written as: 

Continuity equation: 

(ru) (rw)
0

r z

 
 

 
 (1) 

Momentum equation:  

w u gKβ T

r z ν r

  
 

  
 (2) 

where  

 
  

2 3
p

2

D Φ

1

K

80 1 Φ

  (3) 

The variation of density with respect to temperature can 

be described by Boussinesq approximation as: 

   1   T T         (4) 

Energy equation is written as: 

 

 

p

2

r2

T T
ρC u w

r z

1 T T 1
α r rq

r r r r rz

  
  

  

       
    

       

 

 

(5) 

Invoking Rosseland approximation for radiation: 

(Hossain, 1997 and Yih, 1999). 

where  
2

r 

4

R

4n σ
 

3β r
q

T


  

(6) 

The continuity equation can be solved by introducing 

the stream function ( )   as: 

1 Ψ

r
 

z
u  




 (7) 

1 Ψ

r
w 

r





 (8) 

Concentration equation is written as: 

2

2

C C 1 C C
w D r

r z r r r z
u

       
    

       

 (9) 

The boundary conditions used are: 

 

at i w ir  r , T  T ,  C  C ,    0     (10a) 

at o or  r ,  T  T ,  C  0,    0     (10b) 

The following non-dimensional parameters have been 

used: 

ref

r
r

L
 , 

ref

z

L
z  , 

ref

Ψ

αL
  , 

o )

w

(T T

(T T )
T









, 

3

R

4σT

β κ
Rd  , 

T(gβ ΔTKLref )

να
Ra  , 

α

D
Le  , 

 
 

c

T

β ΔC

β ΔT
N  , 

 
 w

C C

C C
C








  

 

(11) 

Thermal diffusivity (α) belongs to effective porous 

medium and is defined as: 

p

k
α

ρC
  (12) 

The boundary conditions used in terms of the non-

dimensional parameters are: 

 

at  ,   1, C=1, 0i ir r T T       (13a) 

at  
( )

,   , C=0, 0
( )

o
o o

w

T T
r r T T

T T






    


 

(13b) 

The  non-dimensional parameters from Eqs. (13a) and 

(13b) are substituted in Eqs. (2), (5) and (9). The non-

dimensionalised forms of the equations Eqs. (2), (5) and 

(9) are as follows: 

 

Non-dimensionalised momentum equation: 
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2

2

1
r

r r

T C
rRa N

r rry

      
            






 (14) 

 

Non-dimensionalised energy equation: 

 

2

2

1 1 4Rd
1

3

T T T T
r

r r z z r r r r z

          
                  

 

(15) 

Non-dimensionalised concentration equation: 

 

2

2

1

1 1

Le

C
r

r r rC C

r r z z r C

z

   
                

      
 
 

 (16) 

When Rd=0, the case reduces to that of pure natural 

convection for the given vertical annular porous 

medium (Rajamani et al. 1995). 

In the present study,  ̅  (Eq. (13b)) has been evaluated 

for four values. They are 0.1, 0.4, 0.8 and 0.9. They 

represent the uniform non-dimensional temperature at 

the cold wall. However taking the length of this paper 

into consideration, only two cases of  ̅ =0.1 and 0.9 

have been presented. The two cases aid in 

determination of the natural convection, heat and mass 

transfer for uniform temperature boundary conditions in 

case of the vertical annular porous medium considered. 

It is observed from Fig. 2 that   ̅̅ ̅̅  increases almost 

linearly with the radiation parameter for all the 

boundary conditions of  ̅  on the cold wall. The value 

of    ̅̅ ̅̅  is around unity at  ̅ =0.4 and further decreases 

as the value of  ̅  increases. At  ̅ =0.9, the value of  

  ̅̅ ̅̅  is near to zero, indicating that the heat transfer 

reduces and ceases to exist as  ̅  approaches unity. 

 
Fig. 2. Variation of   ̅̅ ̅̅  with Rd 

 

Further, the cold wall temperature is assumed to be non 

uniform, obeying the power law function. It varies in 

the vertical direction such that To > T∞. For the problem 

under investigation the boundary conditions can be 

defined as: 

 

at   , 1, 1, 0i ir r T T C       (17a) 

at   , B z , 0, 0o or r T T C
      

  
 

(17b) 

In Eq. (17b), B is a constant. In the present study, λ has 

been evaluated for a value of 0.25 

3. NUMERICAL METHOD 

Equations (14) - (16) are the coupled partial differential 

equations, to be solved in order to predict the fluid 

flow, heat and mass transfer behavior. These equations 

are solved by using finite element method. A simple 

three noded triangular element is considered.  ̅,  ̅ and 

 ̅ varying inside the element can be expressed as: 

 

1 1 2 2 3 3T T TT N N N    (18) 

1 1 2 2 3 3N N N        (19) 

1 1 2 2 3 3C N C N C N C    (20) 

 

N1, N2 and N3 are the shape functions expressed in 

general as:  
 

m m ma b x c y

2A
mN 

 
, where  m= 1, 2, 3. 

(21) 

Details of finite element formulation can be obtained 

from the work done by Segerlind (1982) and Lewis et 

al. (2004). 

The coupled matrix equations are obtained after 

applying Galerkin method to Eqs. (14) – (16). The 

matrix equations are assembled to get the global matrix 

for the whole domain, which is solved iteratively to 

obtain ̅,  ̅ and  ̅ in the porous medium. In order to get 

accurate results, the tolerance levels of the solutions 

for ̅,  ̅ and   ̅ are set at 10-5, 10-7 and 10-9 respectively. 

Element size in the domain is varied by having large 

number of elements located near the wall, where large 

variations in ̅,  ̅ and  ̅ are expected. A sufficiently 

dense mesh is chosen to make the solution invariant. In 

the present study a mesh size consisting of 1800 

elements and 961 nodes is used to solve the governing 

equations. 

 

Applying Galerkin method to Eq. (14) one can obtain: 

 

{  }   ∫   *
   Ψ̅ 

  ̅ 
   ̅

 

  ̅
(
 

 ̅

 Ψ̅

  ̅
)

 

  ̅  (
  ̅

  ̅

  
  ̅

  ̅
)+    ̅       

(22) 

 

Applying Galerkin method to Eq. (15) one can obtain: 
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{  }

  ∫   *
 

 ̅
*
 Ψ̅

  ̅

  ̅

  ̅
 

 Ψ̅

  ̅

  ̅

  ̅
+

 

 (

 

 ̅
 
 

  ̅
( (   

   

 
)  ̅ 

  ̅

  ̅
)    

    ̅ 

  ̅  
) + 

   ̅     

(23) 

 

Applying Galerkin method to Eq. (16) one can obtain: 

 

{  }    ∫   *
 

 ̅
  *

  ̅

  ̅

  ̅

  ̅
 

  ̅

  ̅

  ̅

  ̅
+

 

  
 

  
(
 

 ̅
 
 

  ̅
( ( 

  
   

 
)  ̅  

  ̅

  ̅
)

  
    ̅ 

  ̅ )+   ̅     

(24) 

4. RESULT AND DISCUSSION 

In the first two cases the cold wall is subjected to 

different, uniform temperature boundary conditions; 

 ̅ =0.1 and 0.9 respectively. In the third case, analysis 

is made on the variation of non uniform temperature 

effect along the cold wall of the vertical annulus. The 

variation of the non uniform temperature is in 

accordance with the power law. The hot wall of the 

annulus is maintained at a constant isothermal 

temperature in all the three cases ( ̅  = 1). In the present 

study the value of the power law exponent (λ) 

considered is 0.25 (Eq. (17b)). Results are obtained in 

terms of average Nusselt number (  ̅̅ ̅̅   and average 

Sherwood number (  ̅̅ ̅ ).  

 

Average Nusselt number and Sherwood number are 

given by:  

 

  ̅̅ ̅̅
   = - 

∫ [(   
   

 
)
  ̅

  ̅
] 

 ̅
 

 ̅    ̅ 

  ̅

 ̅
 

(25) 

  ̅̅ ̅̅
    = - 

∫ [(   
   

 
)
  ̅

  ̅
] 

 ̅
 

 ̅    ̅ 
  ̅                  

 ̅
 

(26) 

  ̅̅ ̅   = - 

∫ [
  ̅

  ̅
] 

 ̅
 

 ̅    ̅ 

  ̅

 ̅
          

(27) 

  ̅̅ ̅    = - 

∫ [
  ̅

  ̅
] 

 ̅
 

 ̅    ̅ 
  ̅

 ̅
          

(28) 

 

The temperature gradients (
  ̅

  ̅
) in Eqs. (25) – (28) are 

evaluated using a 4-point polynomial along the nodes 

near the hot and cold walls of the vertical annulus.  

4.1 Verification Cases 

In order to verify the accuracy of the present method of 

numerical analysis using Finite Element Method,   ̅̅ ̅̅
 

for different values of R is compared with those 

available in the literature (Irfan et al., 2006) The 

comparison is shown in Figs. 3(a) and  3(b), at Ra =100 

for three different values of Rd (0, 0.5 and 1). It is 

evident from these figures that the present method has 

good accuracy in predicting the heat transfer behavior 

of the vertical porous annulus as compared with those 

available in the literature.  

 
(a) 

 
(b) 

Fig. 3. (a). Variation of   ̅̅ ̅̅   with 1/R for hot wall 

condition (Case A). (b). Variation of   ̅̅ ̅̅   with 1/R for 

cold wall condition (Case B) 

Case A 

Figure 3(a) shows the variation of   ̅̅ ̅̅  with 1/R. It is 

observed that   ̅̅ ̅̅  is considerably augmented when 

radiation comes into picture. The heat transfer is 

considerably high due to the combined effect of 

convection and radiation as compared to the case when 

the radiation does not exist i.e. pure natural convection 

(Rd=0). It is further observed that the decrease in radius 

ratio leads to decrease in    ̅̅ ̅̅  at the hot wall due to the 

reduction in temperature gradient.  

Case B 

Figure 3(b) shows the variation of   ̅̅ ̅̅  at cold wall of 

the annulus at given conditions. At the cold wall   ̅̅ ̅̅  

increases initially with the decrease in R, but attains a 

constant value at lower values of R.  
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Parametric Cases  

In the present study, two parametric cases have been 

investigated. The effects of several parameters like 

radius ratio, radiation parameter, Rayleigh number and 

cold wall temperatures (uniform and non uniform) on 

the Nusselt and Sherwood numbers have been 

investigated for both hot and cold walls. The parameters 

considered in common to both the cases are as follows: 

a) R= 1 to 10  

b) N= 1 

c) Le= 1 

d) Ar = 5  

e) Cold wall temperatures: 

i. Uniform temperatures:  ̅ = 0.1, 0.9  

ii. Non uniform temperatures: λ=0.25   (Eq. 

(17b))  

Case 1– Effect of Ra on   ̅̅ ̅̅  and    ̅̅̅̅  

This case shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the hot wall and cold wall, 

corresponding to the cold wall boundary conditions. 

Three different values considered for the Rayleigh 

number for the present case are: 10, 25 and 50. 

Figure 4(a) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the hot wall, corresponding to 

the cold wall boundary condition with  ̅ = 0.1. It is 

observed that    ̅̅ ̅̅  and   ̅̅ ̅ increase with R. The 

variation of   ̅̅ ̅̅  and   ̅̅ ̅  is found to be almost linear. As 

seen from the Fig. 4(a), the effect of Ra on   ̅̅ ̅̅  is 

significant due to the higher temperature potential 

between hot wall and the cold wall (Δ ̅ =0.9). The 

effect of Ra on   ̅̅ ̅ depends on the velocity only and it 

is found to have a significant effect on    ̅̅ ̅. The 

temperature potential represented in the present work is 

calculated as follows: 

Δ ̅ = ( ̅  - ̅ ); 

Thus for Case 1: Δ ̅ = (1-0.1) =0.9 

Figure 4(b) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the hot wall, corresponding to 

the cold wall boundary condition with  ̅ = 0.9. It is 

observed that    ̅̅ ̅̅  and   ̅̅ ̅ increase with R. However the 

increase in the value of   ̅̅ ̅̅  is less due to the lower 

temperature potential between hot wall and the cold 

wall (Δ ̅ =0.1). The variation of   ̅̅ ̅̅  and   ̅̅ ̅  is found to 

be almost linear. The effect of Ra on   ̅̅ ̅̅  is not 

significant. However Ra has a significant effect on   ̅̅ ̅ 

similar to the case of  ̅ = 0.1. 

 Figure 4(c) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the hot wall, corresponding to 

the non uniform temperature cold wall boundary 

condition with λ=0.25 (Eq. (17b)).   ̅̅ ̅̅  and   ̅̅ ̅  increase 

with R. The variation of   ̅̅ ̅̅  and   ̅̅ ̅  with R is found to 

be almost linear. However their values in this case lie in 

between the values at hot wall corresponding to the cold 

wall boundary condition of   ̅ = 0.1 and 0.9. The effect 

of Ra on    ̅̅ ̅̅  is not significant in this case, however it 

has the similar influence on    ̅̅ ̅ as in the previous cases 

corresponding to  ̅ = 0.1 and 0.9. 

Figure 4(d) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the cold wall, corresponding to 

the cold wall boundary condition with  ̅ = 0.1.   ̅̅ ̅̅  and 

  ̅̅ ̅ decrease with the increase in R. The variation of   ̅̅ ̅̅  

and   ̅̅ ̅  is found to be non linear. As seen from the Fig. 

4(d), the effect of Ra on   ̅̅ ̅̅  is significant due to the 

higher temperature potential between hot wall and the 

cold wall (Δ ̅ =0.9). 

 

Figure 4(e) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the cold wall, corresponding to 

the cold wall boundary condition with  ̅ = 0.9. It is 

observed that    ̅̅ ̅̅  and   ̅̅ ̅  decrease with the increase in 

R. The variation of   ̅̅ ̅̅  and   ̅̅ ̅  is found to be non 

linear. The effect of Ra on   ̅̅ ̅̅  is also not significant 

due to the lower temperature potential between the hot 

and cold walls (Δ ̅ =0.1). However Ra has a significant 

effect on   ̅̅ ̅ due to the increase in velocity. 

 

Figure 4(f) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Ra at the cold wall, corresponding to 

the non uniform temperature cold wall boundary 

condition with λ=0.25 (Eq. (17b)).    ̅̅ ̅̅  and   ̅̅ ̅ decrease 

with R. The variation of   ̅̅ ̅̅  and   ̅̅ ̅  is found to be non 

linear. However their values in this case lie in between 

the values corresponding to  ̅ = 0.9 and    ̅ = 0.1 at the 

cold wall. 

Case 2– Effect of Radiation on   ̅̅ ̅̅  and   ̅̅̅̅   

This case shows variation of   ̅̅ ̅̅  and   ̅̅ ̅  against R for 

various values of Rd at the hot wall and cold wall 

corresponding to the cold wall temperature boundary 

conditions. Three different values considered for the 

radiation parameter in the present case are: 0, 5 and 10. 

Figure 5(a) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Rd at the hot wall, corresponding to 

the cold wall condition with         ̅ = 0.1. It is observed 

that   ̅̅ ̅̅  and   ̅̅ ̅ increase with R at the hot surface. The 

increase in the values of    ̅̅ ̅̅  and   ̅̅ ̅ is due to the effect 

of reduced thermal and concentration boundary layers, 

which in turn increase the respective gradients. The 

increase of   ̅̅ ̅̅  and   ̅̅ ̅ with R is found to be almost 

linear. The increase in Rd has a significant effect on   ̅̅ ̅̅  

as shown in the Figure 5(a).   However effect of Rd on  

  ̅̅ ̅ is small as expected, as the change in   ̅̅ ̅ observed is 

due to the change in velocity only. 

Figure 5(b) shows variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R for 

various values of Rd at the hot wall, corresponding to 

the cold wall condition with  ̅ = 0.9. It is observed that 

  ̅̅ ̅̅  and   ̅̅ ̅ increase with R at the hot surface. However 

a reduction is observed in the values of   ̅̅ ̅̅  as 

compared with the case of     ̅ = 0.1. The reduction 

observed is due to the reduced temperature potential 

between hot wall and the cold wall (Δ ̅ =0.1). The 

increase in   ̅̅ ̅̅  and   ̅̅ ̅  with R is found to be almost  
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(a) (b) 

  

(c) 

 

(d) 

  

(e) (f) 

Fig. 4. Effect of Rayleigh Number on Convection and Mass Transfer (a). (Hot wall) Effect of Ra on   ̅̅ ̅̅  and   ̅̅̅̅  for 

 ̅ =0.1.(b). (Hot wall) Effect of Ra on   ̅̅ ̅̅  and   ̅̅̅̅  for ̅ =0.9. (c). (Hot wall) Effect of Ra on   ̅̅ ̅̅  and   ̅̅̅̅  for λ =0.25. 

(d). (Cold wall) Effect of Ra on   ̅̅ ̅̅  and   ̅̅̅̅  for  ̅ =0.1. (e). (Cold wall) Effect of Ra on   ̅̅ ̅̅  and   ̅̅̅̅  for  ̅ =0.9. (f). 

(Cold wall) Effect of Ra on   ̅̅ ̅̅  and   ̅̅̅̅  for λ=0.25 

linear. Increase in Rd has the similar effect on   ̅̅ ̅  as in 

in the case of  ̅ = 0.1. 

Figure 5(c) shows the variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R 

for various values of Rd at the hot wall, corresponding 

to the non uniform temperature cold wall boundary 

condition with λ=0.25 (Eq. (17b)).  The variations in 

  ̅̅ ̅̅  and   ̅̅ ̅ in the present case are similar to the cases 

corresponding to  ̅ = 0.1 and 0.9. However their values 

in this case lie in between the values at hot wall 

corresponding to  ̅ = 0.9 and  ̅ = 0.1 at the cold wall. 

Figure 5(d) shows the variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R 

for various values of Rd at the cold wall, corresponding 
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to the cold wall boundary condition with  ̅ = 0.1. It is 

observed that both   ̅̅ ̅̅  and   ̅̅ ̅ decrease with the 

increase in R. It is due to the weaker flow region near 

the cold surface. It is observed that the rate of decrease 

is more at lower values of R up to 2. The variations of 

  ̅̅ ̅̅  and   ̅̅ ̅ with R are found to be non linear. The 

increase in Rd has a significant effect on   ̅̅ ̅̅  and less 

effect on   ̅̅ ̅. 

Figure 5(e) shows the variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R 

for various values of Rd at the cold wall, corresponding 

to the cold wall boundary condition with  ̅ = 0.9. It is 

observed that   ̅̅ ̅̅  and   ̅̅ ̅ increase with R at the cold 

surface. However a reduction is observed in the values 

of   ̅̅ ̅̅  as compared with the case of  ̅ = 0.1. The 

reduction observed is due to the reduced temperature 

potential between hot wall and the cold wall The 

variations of   ̅̅ ̅̅  and   ̅̅ ̅ with R are found to be non 

linear. The increase in Rd has a significant effect on   ̅̅ ̅̅  

and less effect on   ̅̅ ̅ as in the case of  ̅ = 0.1. 

Figure 5(f) shows the variation of   ̅̅ ̅̅  and   ̅̅ ̅ against R 

for various values of Rd at the cold wall, corresponding 

to the non uniform temperature cold wall boundary 

condition with λ=0.25 (Eq. (17b)). The variations in   ̅̅ ̅̅  

and   ̅̅ ̅ in the present case are similar to the cases 

corresponding to  ̅ = 0.1 and 0.9. However their values 

in this case lie in between the values at cold wall 

corresponding to  ̅ = 0.9 and    ̅ = 0.1 at the cold wall. 

Figures 6(a) and 6(b) represent the isothermal lines 

corresponding to Rd=0 and 10 respectively at uniform 

cold wall temperature boundary condition with  ̅ =0.1. 

As can be seen from these figures, the radiation has a 

considerable effect on natural convection. At Rd=0, the 

effect of natural convection is clearly seen as shown in 

Fig.6(a). Here the convection plays a significant role 

when the radiation is absent. The thermal gradient is 

high at the lower corner of the annulus as compared to 

the other places of the hot surface. The isothermal lines 

tend to straighten when the radiation increases 

indicating the lowering effect of convection. The fluid 

smoothly occupies the entire domain at higher radiation 

as shown in Fig. 6(b). 

Figures 6(c) and 6(d) indicate the cases of isothermal 

lines corresponding to Rd=0 and 10 respectively at 

uniform cold wall temperature boundary condition with 

 ̅ =0.9. The effect of natural convection and radiation 

is evident in these cases also. The variation in these 

curves as compared with that of  ̅ =0.1 is due to the 

thermal potential between hot and the cold walls. 

Figures 6(e) and 6(f) indicate the cases of isothermal 

lines corresponding to Rd=0 and 10 respectively for the 

non uniform temperature cold wall boundary condition 

with λ=0.25 (Eq. (17b)). The temperature variation in 

this case is found to be non linear as can be observed 

from the curves. 

Figures 7(a) and 7(b) indicate the cases of stream lines 

corresponding to Rd=0 and 10 respectively at uniform 

cold wall temperature boundary condition with  ̅ =0.1.  

As can be observed from these figures, the increase in 

radiation has considerable effect on natural convection. 

The stream lines approach towards circularity as shown 

in Fig. 7(b). 

 Figures 7(c) and 7(d) indicate the cases of stream lines 

corresponding to Rd=0 and 10 respectively at uniform 

cold wall temperature boundary condition with 

 ̅ =0.9.The effect of radiation on natural convection is 

evident in these cases also. The variation in these 

curves as compared with that of  ̅ =0.1 is due to the 

thermal potential between hot and the cold walls. 

Figures 7 (e) and 7 (f) indicate the cases of stream lines 

corresponding to Rd=0 and 10 respectively for the non 

uniform temperature cold wall boundary condition with 

λ=0.25 (Eq. (17b)). The effect of natural convection is 

clearly seen from these figures. 

5. CONCLUSION 

The effect of radiation and the cold wall boundary 

conditions on the natural convection in a saturated 

vertical porous medium is considered in the present 

study. 

 

The cold wall temperature corresponding to non-

dimensional temperatures of  ̅  = 0.1, 0.4, 0.8 and 0.9 

are investigated. However the results for  ̅  = 0.1 and 

0.9 are only shown in the present work. The governing 

equations are non-dimensionalised and solved using 

finite element method. 

 

It is found that the average Nusselt number and average 

Sherwood number increase with the radius ratio at the 

hot wall. However they decrease with the increase in 

radius ratio at the cold wall. 

 

 It is also found that the average Nusselt number and 

average Sherwood number increase with the Rayleigh 

number at the hot wall and cold wall. The effect of 

Rayleigh number increases for the case of higher 

thermal potential between the hot wall and cold wall. 

Increase in Rayleigh number increases the fluid 

movement, which is due to the enhanced buoyancy 

effect. Hence the fluid velocity is increased along with 

the Nusselt number. 

Radiation has a considerable effect on the rise in 

Nusselt number indicating the increase in natural 

convection process. 
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(a) (b) 

  
(c) (d) 

 

 

(e) (f) 

Fig. 5. Effect of Radiation on Convection and Mass Transfer (a) (Hot wall) Effect of Rd on   ̅̅ ̅̅  and   ̅̅̅̅  for  ̅ =0.1 . 

(b) (Hot wall) Effect of Rd on   ̅̅ ̅̅  and   ̅̅̅̅  for ̅ =0.9.(c)  (Hot wall) Effect of Rd on   ̅̅ ̅̅  and   ̅̅̅̅  for λ =0.25. (d) Cold 

wall) Effect of Rd on   ̅̅ ̅̅  and   ̅̅̅̅  for  ̅ =0.1. (e)  (Cold wall) Effect of Rd on   ̅̅ ̅̅  and   ̅̅̅̅  for  ̅ =0.9. (f) (Cold wall) 

Effect of Rd on   ̅̅ ̅̅  and   ̅̅̅̅  forλ=0.25 Eq. (17b)) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6. Effect of Rd on Isothermal lines at Ra=50; R=1; N=1; Le=1 and Ar=5 (a) Rd =0 for  ̅ =0.1. (b). Rd =10 

for  ̅ =0.1. (c). Rd =0 for  ̅ =0.9. (d). Rd =10 for  ̅ =0.9. (e). Rd =0 for λ =0.25. (f). Rd =10 for λ =0.25 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 7. Effect of Rd on Stream lines at Ra=50; R=1; N=1; Le=1 and Ar=5.  

 (a). Rd =0 for  ̅ =0.1(b) Rd =10 for  ̅  = 0.1. (c). Rd =0 for  ̅  = 0.9. (d). Rd =10 for  ̅  = 0.9. (e). Rd =0 for 

λ =0.25. (f). Rd =10 for λ =0.25 
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APPENDIX 

The matrix form of Eq. (14): 

   ̅

  
[*

  
         

      
     

          
 

+  *

  
         

      
     

          
 

+] ,

Ψ̅ 

Ψ̅ 

Ψ̅ 

-

       ̅   *,

   ̅     ̅     ̅ 

   ̅     ̅     ̅ 

   ̅     ̅     ̅ 

-    ,

   ̅     ̅     ̅ 

   ̅     ̅     ̅ 

   ̅     ̅     ̅ 

-+    

(A1) 

Where,  ̅ = 
  ̅   ̅   ̅  

 
  is the radial distance to the centre of a triangular element. 

The matrix form of Eq. (15): 
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The matrix form of Eq. (16): 
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